Virágh Csaba, Vásárhelyi Gábor, Tarcai Norbert, Szörényi Tamás, Somorjai Gergő, Nepusz Tamás, Vicsek Tamás
ELTE Department of Biological Physics, 1117 Budapest, Pázmány Péter Sétány 1/A, Hungary.
Bioinspir Biomim. 2014 Jun;9(2):025012. doi: 10.1088/1748-3182/9/2/025012. Epub 2014 May 22.
Animal swarms displaying a variety of typical flocking patterns would not exist without the underlying safe, optimal and stable dynamics of the individuals. The emergence of these universal patterns can be efficiently reconstructed with agent-based models. If we want to reproduce these patterns with artificial systems, such as autonomous aerial robots, agent-based models can also be used in their control algorithms. However, finding the proper algorithms and thus understanding the essential characteristics of the emergent collective behaviour requires thorough and realistic modeling of the robot and also the environment. In this paper, we first present an abstract mathematical model of an autonomous flying robot. The model takes into account several realistic features, such as time delay and locality of communication, inaccuracy of the on-board sensors and inertial effects. We present two decentralized control algorithms. One is based on a simple self-propelled flocking model of animal collective motion, the other is a collective target tracking algorithm. Both algorithms contain a viscous friction-like term, which aligns the velocities of neighbouring agents parallel to each other. We show that this term can be essential for reducing the inherent instabilities of such a noisy and delayed realistic system. We discuss simulation results on the stability of the control algorithms, and perform real experiments to show the applicability of the algorithms on a group of autonomous quadcopters. In our case, bio-inspiration works in two ways. On the one hand, the whole idea of trying to build and control a swarm of robots comes from the observation that birds tend to flock to optimize their behaviour as a group. On the other hand, by using a realistic simulation framework and studying the group behaviour of autonomous robots we can learn about the major factors influencing the flight of bird flocks.
如果没有个体潜在的安全、最优且稳定的动力学特性,展现出各种典型聚集模式的动物群体就不会存在。这些普遍模式的出现可以通过基于智能体的模型有效地重建。如果我们想用人工系统(如自主飞行机器人)来重现这些模式,基于智能体的模型也可用于其控制算法中。然而,要找到合适的算法并因此理解涌现的集体行为的本质特征,需要对机器人以及环境进行全面且现实的建模。在本文中,我们首先提出一个自主飞行机器人的抽象数学模型。该模型考虑了几个现实特征,如时间延迟和通信的局部性、机载传感器的不准确性以及惯性效应。我们提出两种分布式控制算法。一种基于动物集体运动的简单自推进聚集模型,另一种是集体目标跟踪算法。两种算法都包含一个类似粘性摩擦的项,它使相邻智能体的速度相互平行对齐。我们表明,该项对于减少这种有噪声且有延迟的现实系统的固有不稳定性可能至关重要。我们讨论了控制算法稳定性的仿真结果,并进行了实际实验,以展示算法在一组自主四旋翼飞行器上的适用性。在我们的案例中,生物启发以两种方式起作用。一方面,尝试构建和控制一群机器人的整体想法源于观察到鸟类倾向于聚集以优化它们作为一个群体的行为。另一方面,通过使用一个现实的仿真框架并研究自主机器人的群体行为,我们可以了解影响鸟群飞行的主要因素。