Inoue Yuichi, Sohara Eisei, Kobayashi Katsuki, Chiga Motoko, Rai Tatemitsu, Ishibashi Kenichi, Horie Shigeo, Su Xuefeng, Zhou Jing, Sasaki Sei, Uchida Shinichi
Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan;
Division of Molecular Genetics, Clinical Research Center, Chiba-East National Hospital, Chiba, Japan;
J Am Soc Nephrol. 2014 Dec;25(12):2789-99. doi: 10.1681/ASN.2013060614. Epub 2014 May 22.
We previously reported that disruption of the aquaporin-11 (AQP11) gene in mice resulted in cystogenesis in the kidney. In this study, we aimed to clarify the mechanism of cystogenesis in AQP11(-/-) mice. To enable the analyses of AQP11 at the protein level in vivo, AQP11 BAC transgenic mice (Tg(AQP11)) that express 3×HA-tagged AQP11 protein were generated. This AQP11 localized to the endoplasmic reticulum (ER) of proximal tubule cells in Tg(AQP11) mice and rescued renal cystogenesis in AQP11(-/-) mice. Therefore, we hypothesized that the absence of AQP11 in the ER could result in impaired quality control and aberrant trafficking of polycystin-1 (PC-1) and polycystin-2 (PC-2). Compared with kidneys of wild-type mice, AQP11(-/-) kidneys exhibited increased protein expression levels of PC-1 and decreased protein expression levels of PC-2. Moreover, PC-1 isolated from AQP11(-/-) mice displayed an altered electrophoretic mobility caused by impaired N-glycosylation processing, and density gradient centrifugation of kidney homogenate and in vivo protein biotinylation revealed impaired membrane trafficking of PC-1 in these mice. Finally, we showed that the Pkd1(+/-) background increased the severity of cystogenesis in AQP11(-/-) mouse kidneys, indicating that PC-1 is involved in the mechanism of cystogenesis in AQP11(-/-) mice. Additionally, the primary cilia of proximal tubules were elongated in AQP11(-/-) mice. Taken together, these data show that impaired glycosylation processing and aberrant membrane trafficking of PC-1 in AQP11(-/-) mice could be a key mechanism of cystogenesis in AQP11(-/-) mice.
我们之前报道过,小鼠水通道蛋白11(AQP11)基因的破坏会导致肾脏囊肿形成。在本研究中,我们旨在阐明AQP11基因敲除(AQP11(-/-))小鼠囊肿形成的机制。为了能够在体内蛋白质水平分析AQP11,我们构建了表达3×HA标签的AQP11蛋白的AQP11细菌人工染色体转基因小鼠(Tg(AQP11))。这种AQP11定位于Tg(AQP11)小鼠近端小管细胞的内质网(ER),并挽救了AQP11(-/-)小鼠的肾囊肿形成。因此,我们推测内质网中AQP11的缺失可能导致多囊蛋白-1(PC-1)和多囊蛋白-2(PC-2)的质量控制受损和异常运输。与野生型小鼠的肾脏相比,AQP11(-/-)小鼠的肾脏中PC-1的蛋白质表达水平升高,而PC-2的蛋白质表达水平降低。此外,从AQP11(-/-)小鼠分离的PC-1显示出由于N-糖基化加工受损而导致的电泳迁移率改变,肾脏匀浆的密度梯度离心和体内蛋白质生物素化显示这些小鼠中PC-1的膜运输受损。最后,我们表明Pkd1(+/-)背景增加了AQP11(-/-)小鼠肾脏囊肿形成的严重程度,表明PC-1参与了AQP11(-/-)小鼠囊肿形成的机制。此外,AQP11(-/-)小鼠近端小管的初级纤毛伸长。综上所述,这些数据表明AQP11(-/-)小鼠中PC-1的糖基化加工受损和异常膜运输可能是AQP11(-/-)小鼠囊肿形成的关键机制。