Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, 352 Kapoor Hall, Buffalo, New York, 14214-8033, USA,
AAPS J. 2014 Jul;16(4):756-70. doi: 10.1208/s12248-014-9593-8. Epub 2014 May 23.
Overdose of γ-hydroxybutyrate (GHB) can result in severe respiratory depression. Monocarboxylate transporter (MCT) inhibitors, including L-lactate, increase GHB clearance and represent a potential treatment for GHB intoxication. GHB can also affect L-lactate clearance, and L-lactate has been reported to affect respiration. In this research, we characterize these toxicokinetic/toxicodynamic interactions between GHB and L-lactate using mechanistic modeling. Plasma, urine, and respiration data were taken from our previous study in which GHB and sodium L-lactate were administered alone and concomitantly in rats. A model incorporating active renal reabsorption for both agents fit GHB and L-lactate toxicokinetic data. The Km for renal reabsorption of GHB (650 μg/mL) was close to its Km for the proton-dependent MCT1 and that for L-lactate (13.5 μg/mL) close to its Km for the sodium-dependent SMCT1. Inhibition of reabsorption by both agents was necessary to model concomitant drug administration. The metabolic Km for L-lactate closely resembled that for MCT-mediated hepatic uptake in vitro, and GHB inhibited this process. L-lactate significantly inhibited respiration at a high dose, and an indirect response model was used to fit these data. GHB toxicodynamics was modeled as a direct effect delayed by nonlinear transport into the brain extracellular fluid, with a Km value of 1,865 μg/mL for brain uptake which is similar to the in vitro Km value determined in rat brain endothelial cells. This model was useful for characterizing multiple MCT-mediated interactions. Incorporation of many parameters that can be determined in vitro may allow for clinical translation of these interactions.
γ-羟基丁酸(GHB)过量会导致严重的呼吸抑制。单羧酸转运蛋白(MCT)抑制剂,包括 L-乳酸,可增加 GHB 的清除率,是治疗 GHB 中毒的潜在方法。GHB 也会影响 L-乳酸的清除率,并且据报道 L-乳酸会影响呼吸。在这项研究中,我们使用机制模型来描述 GHB 和 L-乳酸之间的这些毒代动力学/毒效动力学相互作用。我们之前的研究中采集了 GHB 和 L-乳酸单独和同时给药后大鼠的血浆、尿液和呼吸数据。一个包含两种药物主动肾重吸收的模型拟合了 GHB 和 L-乳酸的毒代动力学数据。GHB 肾重吸收的 Km(650μg/mL)接近其质子依赖型 MCT1 的 Km,而 L-乳酸的 Km(13.5μg/mL)接近其钠离子依赖型 SMCT1 的 Km。需要同时抑制两种药物的重吸收,才能对同时给药进行建模。L-乳酸的代谢 Km 与体外 MCT 介导的肝摄取非常相似,而 GHB 抑制了这一过程。L-乳酸在高剂量时会显著抑制呼吸,并且使用间接反应模型对这些数据进行拟合。GHB 的毒效动力学被建模为一种延迟的直接效应,通过非线性运输进入脑细胞外液,脑摄取的 Km 值为 1,865μg/mL,与在大鼠脑内皮细胞中测定的体外 Km 值相似。该模型可用于描述多种 MCT 介导的相互作用。纳入许多可在体外确定的参数可能会使这些相互作用的临床转化成为可能。