CMPMSD, Brookhaven National Laboratory, Upton, New York 11973, USA.
NCNR, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA.
Phys Rev Lett. 2014 May 9;112(18):187202. doi: 10.1103/PhysRevLett.112.187202.
Fe(1+y)Te with y≲0.05 exhibits a first-order phase transition on cooling to a state with a lowered structural symmetry, bicollinear antiferromagnetic order, and metallic conductivity, dρ/dT>0. Here, we study samples with y=0.09(1), where the frustration effects of the interstitial Fe decouple different orders, leading to a sequence of transitions. While the lattice distortion is closely followed by incommensurate magnetic order, the development of bicollinear order and metallic electronic coherence is uniquely associated with a separate hysteretic first-order transition, at a markedly lower temperature, to a phase with dramatically enhanced bond-order wave (BOW) order. The BOW state suggests ferro-orbital ordering, where electronic delocalization in ferromagnetic zigzag chains decreases local spin and results in metallic transport.
Fe(1+y)Te 中 0≲y≲0.05 的样品在冷却时会经历一级相变,形成结构对称性降低、双交换反铁磁有序且具有金属导电性(dρ/dT>0)的状态。在这里,我们研究 y=0.09(1)的样品,其中由于间隙 Fe 的去耦作用,体系的各向异性效应会导致不同序的竞争,从而引发一系列相变。晶格畸变与非调幅磁有序紧密相关,而双交换有序和金属电子相干的发展与一个单独的滞后一级相变密切相关,这个一级相变在一个明显更低的温度下发生,形成一个具有显著增强的键序波(BOW)序的相。BOW 态表明存在铁磁轨道有序,其中在铁磁锯齿链中的电子离域会降低局部自旋,从而导致金属输运。