Suppr超能文献

肾上腺疾病发生风险状况的识别:优化的PubMed检索策略如何发挥作用。

Identification of risk conditions for the development of adrenal disorders: how optimized PubMed search strategies makes the difference.

作者信息

Guaraldi Federica, Parasiliti-Caprino Mirko, Goggi Riccardo, Beccuti Guglielmo, Grottoli Silvia, Arvat Emanuela, Ghizzoni Lucia, Ghigo Ezio, Giordano Roberta, Gori Davide

机构信息

Division of Endocrinology, Diabetology and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti, 14, 10126, Turin, Italy,

出版信息

Endocrine. 2014 Dec;47(3):734-9. doi: 10.1007/s12020-014-0295-x. Epub 2014 May 25.

Abstract

The exponential growth of scientific literature available through electronic databases (namely PubMed) has increased the chance of finding interesting articles. At the same time, search has become more complicated, time consuming, and at risk of missing important information. Therefore, optimized strategies have to be adopted to maximize searching impact. The aim of this study was to formulate efficient strings to search PubMed for etiologic associations between adrenal disorders (ADs) and other conditions. A comprehensive list of terms identifying endogenous conditions primarily affecting adrenals was compiled. An ad hoc analysis was performed to find the best way to express each term in order to find the highest number of potentially pertinent articles in PubMed. A predefined number of retrieved abstracts were read to assess their association with ADs' etiology. A more sensitive (providing the largest literature coverage) and a more specific (including only those terms retrieving >40 % of potentially pertinent articles) string were formulated. Various researches were performed to assess strings' ability to identify articles of interest in comparison with non-optimized literature searches. We formulated optimized, ready applicable tools for the identification of the literature assessing etiologic associations in the field of ADs using PubMed, and demonstrated the advantages deriving from their application. Detailed description of the methodological process is also provided, so that this work can easily be translated to other fields of practice.

摘要

通过电子数据库(即PubMed)可获取的科学文献呈指数级增长,这增加了找到有趣文章的机会。与此同时,搜索变得更加复杂、耗时,且有遗漏重要信息的风险。因此,必须采用优化策略以最大化搜索效果。本研究的目的是制定有效的检索式,以便在PubMed中搜索肾上腺疾病(ADs)与其他病症之间的病因学关联。编制了一份识别主要影响肾上腺的内源性病症的术语综合列表。进行了一项专项分析,以找到表达每个术语的最佳方式,以便在PubMed中找到数量最多的潜在相关文章。阅读预先设定数量的检索摘要,以评估它们与ADs病因的关联。制定了一个更敏感(提供最大文献覆盖范围)和更特异(仅包括那些检索到>40%潜在相关文章的术语)的检索式。与未优化的文献检索相比,进行了各种研究以评估检索式识别感兴趣文章的能力。我们制定了优化的、可直接应用的工具,用于使用PubMed识别评估ADs领域病因学关联的文献,并展示了其应用带来的优势。还提供了方法学过程的详细描述,以便这项工作能够轻松地应用于其他实践领域。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验