Suppr超能文献

测量非人类动物的恶心到呕吐连续体:重新聚焦于胃肠迷走神经信号传导。

Measuring the nausea-to-emesis continuum in non-human animals: refocusing on gastrointestinal vagal signaling.

作者信息

Horn Charles C

机构信息

Biobehavioral Oncology Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA,

出版信息

Exp Brain Res. 2014 Aug;232(8):2471-81. doi: 10.1007/s00221-014-3985-y. Epub 2014 May 28.

Abstract

Nausea and vomiting are ubiquitous as drug side effects and symptoms of disease; however, the systems that determine these responses are arguably designed for protection against food poisoning occurring at the level of the gastrointestinal (GI) tract. This basic biological pathway using GI vagal afferent communication to the brain is not well understood. Part of this lack of insight appears to be related to current experimental approaches, such as the use of experimental drugs, including systemic chemotherapy and brain penetrant agents, which activate parts of the nausea and vomiting system in potentially unnatural ways. Directly related to this issue is our ability to understand the link between nausea and vomiting, which are sometimes argued to be completely separate processes, with nausea as an unmeasurable response in animal models. An argument is made that nausea and emesis are the efferent limbs of a unified sensory input from the GI tract that is likely to be impossible to understand without more specific animal electrophysiological experimentation of vagal afferent signaling. The current paper provides a review on the use of animal models and approaches to defining the biological systems for nausea and emesis and presents a potentially testable theory on how these systems work in combination.

摘要

恶心和呕吐作为药物副作用和疾病症状普遍存在;然而,可以说决定这些反应的系统是为防止胃肠道(GI)层面发生食物中毒而设计的。这种利用迷走神经传入通路从胃肠道向大脑传递信息的基本生物学途径尚未得到充分理解。这种认识不足的部分原因似乎与当前的实验方法有关,比如使用实验药物,包括全身化疗药物和能够穿透血脑屏障的药物,这些药物可能以非自然的方式激活恶心和呕吐系统的某些部分。与此问题直接相关的是我们理解恶心与呕吐之间联系的能力,有人认为它们有时是完全独立的过程,在动物模型中恶心是一种无法测量的反应。有一种观点认为,恶心和呕吐是来自胃肠道统一感觉输入的传出分支,如果没有对迷走神经传入信号进行更具体的动物电生理实验,可能无法理解这一过程。本文综述了动物模型的使用以及定义恶心和呕吐生物系统的方法,并提出了一个关于这些系统如何协同工作的潜在可测试理论。

相似文献

1
Measuring the nausea-to-emesis continuum in non-human animals: refocusing on gastrointestinal vagal signaling.
Exp Brain Res. 2014 Aug;232(8):2471-81. doi: 10.1007/s00221-014-3985-y. Epub 2014 May 28.
2
The medical implications of gastrointestinal vagal afferent pathways in nausea and vomiting.
Curr Pharm Des. 2014;20(16):2703-12. doi: 10.2174/13816128113199990568.
3
Delineation of vagal emetic pathways: intragastric copper sulfate-induced emesis and viral tract tracing in musk shrews.
Am J Physiol Regul Integr Comp Physiol. 2014 Mar 1;306(5):R341-51. doi: 10.1152/ajpregu.00413.2013. Epub 2014 Jan 15.
4
The role of vagal neurocircuits in the regulation of nausea and vomiting.
Eur J Pharmacol. 2014 Jan 5;722:38-47. doi: 10.1016/j.ejphar.2013.08.047. Epub 2013 Oct 31.
5
A genetic approach for investigating vagal sensory roles in regulation of gastrointestinal function and food intake.
Auton Neurosci. 2006 Jun 30;126-127:9-29. doi: 10.1016/j.autneu.2006.03.005. Epub 2006 May 4.
7
Food restriction, refeeding, and gastric fill fail to affect emesis in musk shrews.
Am J Physiol Gastrointest Liver Physiol. 2010 Jan;298(1):G25-30. doi: 10.1152/ajpgi.00366.2009. Epub 2009 Nov 5.
8
Chronic nausea and vomiting: insights into underlying mechanisms.
Neurogastroenterol Motil. 2016 May;28(5):613-9. doi: 10.1111/nmo.12837.
9
The neurophysiology of vomiting.
Baillieres Clin Gastroenterol. 1988 Jan;2(1):141-68. doi: 10.1016/0950-3528(88)90025-5.
10
Plasticity of vagal afferent signaling in the gut.
Medicina (Kaunas). 2017;53(2):73-84. doi: 10.1016/j.medici.2017.03.002. Epub 2017 Apr 10.

引用本文的文献

1
Neural pathways of nausea and roles in energy balance.
Curr Opin Neurobiol. 2025 Feb;90:102963. doi: 10.1016/j.conb.2024.102963. Epub 2025 Jan 6.
2
Central mechanisms of emesis: A role for GDF15.
Neurogastroenterol Motil. 2025 Mar;37(3):e14886. doi: 10.1111/nmo.14886. Epub 2024 Aug 6.
3
The antiemetic actions of GIP receptor agonism.
Am J Physiol Endocrinol Metab. 2024 Apr 1;326(4):E528-E536. doi: 10.1152/ajpendo.00330.2023. Epub 2024 Mar 13.
4
Screening study of anti-emetics to improve GDF15-induced malaise and anorexia: Implications for emesis control.
Physiol Behav. 2023 Aug 1;267:114229. doi: 10.1016/j.physbeh.2023.114229. Epub 2023 May 8.
6
Assessment of PDE4 Inhibitor-Induced Hypothermia as a Correlate of Nausea in Mice.
Biology (Basel). 2021 Dec 20;10(12):1355. doi: 10.3390/biology10121355.
7
Glucagon-like peptide-1 in diabetes care: Can glycaemic control be achieved without nausea and vomiting?
Br J Pharmacol. 2022 Feb;179(4):542-556. doi: 10.1111/bph.15647. Epub 2021 Sep 14.
8
The Role of GIP in the Regulation of GLP-1 Satiety and Nausea.
Diabetes. 2021 Sep;70(9):1956-1961. doi: 10.2337/dbi21-0004. Epub 2021 Jun 27.
9
The Phantom Satiation Hypothesis of Bariatric Surgery.
Front Neurosci. 2021 Feb 1;15:626085. doi: 10.3389/fnins.2021.626085. eCollection 2021.
10
Corrination of a GLP-1 Receptor Agonist for Glycemic Control without Emesis.
Cell Rep. 2020 Jun 16;31(11):107768. doi: 10.1016/j.celrep.2020.107768.

本文引用的文献

2
Pathophysiological and neurochemical mechanisms of postoperative nausea and vomiting.
Eur J Pharmacol. 2014 Jan 5;722:55-66. doi: 10.1016/j.ejphar.2013.10.037. Epub 2013 Oct 26.
3
Delineation of vagal emetic pathways: intragastric copper sulfate-induced emesis and viral tract tracing in musk shrews.
Am J Physiol Regul Integr Comp Physiol. 2014 Mar 1;306(5):R341-51. doi: 10.1152/ajpregu.00413.2013. Epub 2014 Jan 15.
4
Nausea and the quest for the perfect anti-emetic.
Eur J Pharmacol. 2014 Jan 5;722:108-21. doi: 10.1016/j.ejphar.2013.09.072. Epub 2013 Oct 22.
5
An overview of animal models of pain: disease models and outcome measures.
J Pain. 2013 Nov;14(11):1255-69. doi: 10.1016/j.jpain.2013.06.008. Epub 2013 Sep 12.
6
Novel dynamic measures of emetic behavior in musk shrews.
Auton Neurosci. 2013 Dec;179(1-2):60-7. doi: 10.1016/j.autneu.2013.07.006. Epub 2013 Aug 13.
7
The medical implications of gastrointestinal vagal afferent pathways in nausea and vomiting.
Curr Pharm Des. 2014;20(16):2703-12. doi: 10.2174/13816128113199990568.
8
Serotonin signalling in the gut--functions, dysfunctions and therapeutic targets.
Nat Rev Gastroenterol Hepatol. 2013 Aug;10(8):473-86. doi: 10.1038/nrgastro.2013.105. Epub 2013 Jun 25.
9
Activation of guanylate cyclase-C attenuates stretch responses and sensitization of mouse colorectal afferents.
J Neurosci. 2013 Jun 5;33(23):9831-9. doi: 10.1523/JNEUROSCI.5114-12.2013.
10
Why can't rodents vomit? A comparative behavioral, anatomical, and physiological study.
PLoS One. 2013 Apr 10;8(4):e60537. doi: 10.1371/journal.pone.0060537. Print 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验