Grabo Jennifer E, Chrisman Mark A, Webb Lindsay M, Baldwin Michael J
Department of Chemistry, University of Cincinnati , P.O. Box 210172, Cincinnati, Ohio 45221-0172, United States.
Inorg Chem. 2014 Jun 2;53(11):5781-7. doi: 10.1021/ic500635q. Epub 2014 May 19.
The trimeric clusters Fe(III)3(X-Sal-AHA)3(μ3-OCH3), where X-Sal-AHA is a tetradentate chelate incorporating an α-hydroxy acid moiety (AHA) and a salicylidene moiety (X-Sal with X being 5-NO2, 3,5-diCl, all-H, 3-OCH3, or 3,5-di-t-Bu substituents on the phenolate ring), undergo a photochemical reaction resulting in reduction of two Fe(III) to Fe(II) for each AHA group that is oxidatively cleaved. However, photolysis of structurally analogous mixed Fe/Ga clusters demonstrate that a similar photolysis reaction will occur with only a single Fe(III) in the cluster. Quantum yields of iron reduction for the series of Fe(III)3(X-Sal-AHA)3(μ3-OCH3) complexes measured by monitoring Fe(II) production are twice those for ligand oxidation, measured by loss of the CD signal for the complex due to cleavage of the chiral AHA group.The quantum yields, 2-13% in the UVA and UVB ranges, are higher for complexes with electron-withdrawing X groups than for those with electron-donating X groups [corrected]. The observed final photolysis product of the chelate is different if irradiation is done in the air than if it is done under Ar. The first observed photochemical product is the aldehyde resulting from decarboxylation of the AHA. This is the final product under anaerobic conditions. In air, this is followed by an Fe- and O2-dependent reaction oxidizing the aldehyde to the corresponding carboxylate, then a second Fe- and light-dependent decarboxylation reaction giving a product that is two carbons smaller than the initial ligand. These reactivity studies have important biological implications for the photoactive marine siderophores. They suggest that different types of photochemical products for different siderophore structure types do not result from different initial photochemical steps, but rather from different susceptibility of the initial photochemical product to air oxidation.
三聚体簇合物[Fe(III)3(X-Sal-AHA)3(μ3-OCH3)]-,其中X-Sal-AHA是一种四齿螯合物,包含一个α-羟基酸部分(AHA)和一个水杨醛部分(X-Sal,X为酚盐环上的5-NO2、3,5-二氯、全氢、3-OCH3或3,5-二叔丁基取代基),发生光化学反应,对于每个被氧化裂解的AHA基团,会导致两个Fe(III)还原为Fe(II)。然而,结构类似的混合Fe/Ga簇合物的光解表明,该簇合物中只有一个Fe(III)时也会发生类似的光解反应。通过监测Fe(II)的生成来测量的一系列[Fe(III)3(X-Sal-AHA)3(μ3-OCH3)]-配合物的铁还原量子产率是通过监测由于手性AHA基团裂解导致配合物的CD信号损失来测量的配体氧化量子产率的两倍。在UVA和UVB范围内,量子产率为2-13%,具有吸电子X基团的配合物比具有给电子X基团的配合物更高[校正后]。如果在空气中照射,与在Ar气氛下照射相比,螯合物观察到的最终光解产物不同。首先观察到的光化学产物是AHA脱羧产生的醛。这是厌氧条件下的最终产物。在空气中,随后是一个依赖于Fe和O2的反应,将醛氧化为相应的羧酸盐,然后是第二个依赖于Fe和光的脱羧反应,生成一种比初始配体少两个碳的产物。这些反应性研究对光活性海洋铁载体具有重要的生物学意义。它们表明,不同类型的铁载体结构产生不同类型的光化学产物,不是源于不同的初始光化学步骤,而是源于初始光化学产物对空气氧化的不同敏感性。