Suppr超能文献

碳水化合物自由基:从乙二醇到 DNA 链断裂。

Carbohydrate radicals: from ethylene glycol to DNA strand breakage.

机构信息

Max-Planck-Institut für Strahlenchemie , Stiftstr. 34-36, Mülheim/Ruhr , F.R. Germany.

出版信息

Int J Radiat Biol. 2014 Jun;90(6):416-22. doi: 10.3109/09553002.2014.908040.

Abstract

Radiation-induced DNA strand breakage results from the reactions of radicals formed at the sugar moiety of DNA. In order to elucidate the mechanism of this reaction investigations were first performed on low molecular weight model systems. Results from studies on deoxygenated aqueous solutions of ethylene glycol, 2-deoxy-d-ribose and other carbohydrates and, more relevantly, of d-ribose-5-phosphate have shown that substituents can be eliminated from the β-position of the radical site either proton and base-assisted (as in the case of the OH substituent), or spontaneously (as in the case of the phosphate substituent). In DNA the C(4') radical undergoes strand breakage via this type of reaction. In the presence of oxygen the carbon-centred radicals are rapidly converted into the corresponding peroxyl radicals. Again, low molecular weights models have been investigated to elucidate the key reactions. A typical reaction of DNA peroxyl radicals is the fragmentation of the C(4')-C(S') bond, a reaction not observed in the absence of oxygen. Although OH radicals may be the important direct precursors of the sugar radicals of DNA, results obtained with poly(U) indicate that base radicals may well be of even greater importance. The base radicals, formed by addition of the water radicals (H and OH) to the bases would in their turn attack the sugar moiety to produce sugar radicals which then give rise to strand breakage and base release. For a better understanding of strand break formation it is therefore necessary to investigate in more detail the reactions of the base radicals. For a start, the radiolysis of uracil in oxygenated solutions has been reinvestigated, and it has been shown that the major peroxyl radical in this system undergoes base-catalysed elimination of [Formula: see text], a reaction that involves the proton at N(l). In the nucleic acids the pyrimidines are bound at N(l) to the sugar moiety and this type of reaction can no longer occur. Therefore, with respect to the nucleic acids, pyrimidines are good models only in acid solutions where the [Formula: see text] elimination reaction is too slow to compete with the bimolecular reactions of the peroxyl radicals. Moreover, the long lifetime of the radical sites on the nucleic acid strand may allow reactions to occur which are kinetically of first order, and which cannot be studied in model systems at ordinary dose rates. It is therefore suggested to extend model system studies to low dose rates and to oligonucleo-tides. Such studies might eventually reveal the key reactions in radical-induced DNA degradation.

摘要

辐射诱导的 DNA 链断裂是由 DNA 糖部分形成的自由基反应引起的。为了阐明这一反应的机制,首先在低分子量模型系统上进行了研究。对脱氧水溶液中的乙二醇、2-脱氧-D-核糖和其他碳水化合物的研究结果,以及更相关的 D-核糖-5-磷酸的研究结果表明,取代基可以从自由基位点的β位消除,无论是质子和碱基辅助(如 OH 取代基的情况),还是自发消除(如磷酸盐取代基的情况)。在 DNA 中,C(4')自由基通过这种类型的反应导致链断裂。在氧气存在下,碳中心自由基会迅速转化为相应的过氧自由基。同样,也研究了低分子量模型以阐明关键反应。DNA 过氧自由基的典型反应是 C(4')-C(S')键的断裂,这种反应在没有氧气的情况下观察不到。尽管 OH 自由基可能是 DNA 糖自由基的重要直接前体,但用聚(U)得到的结果表明,碱基自由基可能更为重要。碱基自由基是由水自由基(H 和 OH)加成到碱基上形成的,它们会反过来攻击糖部分,产生糖自由基,然后导致链断裂和碱基释放。为了更好地理解链断裂的形成,因此有必要更详细地研究碱基自由基的反应。首先,重新研究了含氧溶液中尿嘧啶的辐射分解,结果表明,该系统中的主要过氧自由基经历了碱催化消除[式:见文本],这是一种涉及 N(l)上质子的反应。在核酸中,嘧啶与糖部分结合在 N(l)上,这种类型的反应不再发生。因此,就核酸而言,嘧啶仅在酸性溶液中是良好的模型,因为[式:见文本]消除反应太慢,无法与过氧自由基的双分子反应竞争。此外,核酸链上自由基位点的长寿命可能允许发生动力学上为一级的反应,而在普通剂量率的模型系统中无法研究这些反应。因此,建议将模型系统研究扩展到低剂量率和寡核苷酸。这些研究最终可能揭示自由基诱导的 DNA 降解中的关键反应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验