Yuran Sivan, Razvag Yair, Das Priyadip, Reches Meital
The Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel.
J Pept Sci. 2014 Jul;20(7):479-86. doi: 10.1002/psc.2646. Epub 2014 Jun 2.
Functional structures and materials are formed spontaneously in nature through the process of self-assembly. Mimicking this process in vitro will lead to the formation of new substances that would impact many areas including energy production and storage, biomaterials and implants, and drug delivery. The considerable structural diversity of peptides makes them appealing building blocks for self-assembly in vitro. This paper describes the self-assembly of three aromatic dipeptides containing an azide moiety: H-Phe(4-azido)-Phe(4-azido)-OH, H-Phe(4-azido)-Phe-OH, and H-Phe-Phe(4-azido)-OH. The peptide H-Phe(4-azido)-Phe(4-azido)-OH self-assembled into porous spherical structures, whereas the peptides H-Phe(4-azido)-Phe-OH and H-Phe-Phe(4-azido)-OH did not form any ordered structures under the examined experimental conditions. The azido group of the peptide can serve as a photo cross-linking agent upon irradiation with UV light. To examine the effect of this group and its activity on the self-assembled structures, we irradiated the assemblies in solution for different time periods. Using electron microscopy, we determined that the porous spherical assemblies formed by the peptide H-Phe(4-azido)-Phe(4-azido)-OH underwent a structural change upon irradiation. In addition, using FT-IR, we detected the chemical change of the peptide azido group. Moreover, using indentation experiments with atomic force microscopy, we showed that the Young's modulus of the spherical assemblies increased after 20 min of irradiation with UV light. Overall, irradiating the solution of the peptide assemblies containing the azido group resulted in a change both in the morphology and mechanical properties of the peptide-based structures. These ordered assemblies or their peptide monomer building blocks can potentially be incorporated into other peptide assemblies to generate stiffer and more stable materials.
功能结构和材料在自然界中通过自组装过程自发形成。在体外模拟这一过程将导致新物质的形成,这些新物质将影响包括能源生产与存储、生物材料与植入物以及药物递送等许多领域。肽的结构多样性使其成为体外自组装颇具吸引力的构建单元。本文描述了三种含有叠氮基部分的芳香二肽的自组装:H-Phe(4-叠氮基)-Phe(4-叠氮基)-OH、H-Phe(4-叠氮基)-Phe-OH和H-Phe-Phe(4-叠氮基)-OH。肽H-Phe(4-叠氮基)-Phe(4-叠氮基)-OH自组装成多孔球形结构,而肽H-Phe(4-叠氮基)-Phe-OH和H-Phe-Phe(4-叠氮基)-OH在研究的实验条件下未形成任何有序结构。肽的叠氮基在紫外光照射下可作为光交联剂。为了研究该基团及其活性对自组装结构的影响,我们在溶液中对组装体进行了不同时间段的照射。通过电子显微镜,我们确定肽H-Phe(4-叠氮基)-Phe(4-叠氮基)-OH形成的多孔球形组装体在照射后发生了结构变化。此外,通过傅里叶变换红外光谱,我们检测到了肽叠氮基的化学变化。而且,通过原子力显微镜的压痕实验,我们表明在紫外光照射20分钟后,球形组装体的杨氏模量增加。总体而言,照射含有叠氮基的肽组装体溶液导致基于肽的结构在形态和力学性能上都发生了变化。这些有序组装体或其肽单体构建单元有可能被纳入其他肽组装体中,以生成更硬且更稳定的材料。