Suppr超能文献

倾向评分简介。

Introduction to propensity scores.

作者信息

Williamson Elizabeth J, Forbes Andrew

机构信息

School of Public Health & Preventive Medicine, Monash University, Melbourne, Victoria, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia; The Victorian Centre for Biostatistics (ViCBiostat), Melbourne, Victoria, Australia; Farr Institute of Health Informatics Research, London, UK.

出版信息

Respirology. 2014 Jul;19(5):625-35. doi: 10.1111/resp.12312. Epub 2014 May 29.

Abstract

Although randomization provides a gold-standard method of assessing causal relationships, it is not always possible to randomly allocate exposures. Where exposures are not randomized, estimating exposure effects is complicated by confounding. The traditional approach to dealing with confounding is to adjust for measured confounding variables within a regression model for the outcome variable. An alternative approach--propensity scoring--instead fits a regression model to the exposure variable. For a binary exposure, the propensity score is the probability of being exposed, given the measured confounders. These scores can be estimated from the data, for example by fitting a logistic regression model for the exposure including the confounders as explanatory variables and obtaining the estimated propensity scores from the predicted exposure probabilities from this model. These estimated propensity scores can then be used in various ways-matching, stratification, covariate-adjustment or inverse-probability weighting-to obtain estimates of the exposure effect. In this paper, we provide an introduction to propensity score methodology and review its use within respiratory health research. We illustrate propensity score methods by investigating the research question: 'Does personal smoking affect the risk of subsequent asthma?' using data taken from the Tasmanian Longitudinal Health Study.

摘要

尽管随机化提供了评估因果关系的金标准方法,但并非总是能够随机分配暴露因素。在暴露因素未被随机分配的情况下,混杂因素会使暴露效应的估计变得复杂。处理混杂因素的传统方法是在针对结果变量的回归模型中对测量到的混杂变量进行调整。另一种方法——倾向评分法——则是针对暴露变量拟合一个回归模型。对于二元暴露因素,倾向评分是在给定测量到的混杂因素的情况下暴露的概率。这些分数可以从数据中估计出来,例如通过针对暴露因素拟合一个逻辑回归模型,将混杂因素作为解释变量,并从该模型预测的暴露概率中获得估计的倾向评分。然后,这些估计的倾向评分可以通过多种方式使用——匹配、分层、协变量调整或逆概率加权——来获得暴露效应的估计值。在本文中,我们介绍倾向评分方法,并回顾其在呼吸健康研究中的应用。我们通过研究问题“个人吸烟是否会影响后续患哮喘的风险?”来说明倾向评分方法,该研究使用了来自塔斯马尼亚纵向健康研究的数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验