Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA.
Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
J Bacteriol. 2014 Aug;196(15):2861-8. doi: 10.1128/JB.01735-14. Epub 2014 Jun 2.
Arabinose-5-phosphate isomerases (APIs) catalyze the interconversion of d-ribulose-5-phosphate and D-arabinose-5-phosphate, the first step in the biosynthesis of 3-deoxy-D-manno-octulosonic acid (Kdo), an essential component of the lipopolysaccharide in Gram-negative bacteria. Classical APIs, such as Escherichia coli KdsD, contain a sugar isomerase domain and a tandem cystathionine beta-synthase domain. Despite substantial effort, little is known about structure-function relationships in these APIs. We recently reported an API containing only a sugar isomerase domain. This protein, c3406 from E. coli CFT073, has no known physiological function. In this study, we investigated a putative single-domain API from the anaerobic Gram-negative bacterium Bacteroides fragilis. This putative API (UniProt ID Q5LIW1) is the only protein encoded by the B. fragilis genome with significant identity to any known API, suggesting that it is responsible for lipopolysaccharide biosynthesis in B. fragilis. We tested this hypothesis by preparing recombinant Q5LIW1 protein (here referred to by the UniProt ID Q5LIW1), characterizing its API activity in vitro, and demonstrating that the gene encoding Q5LIW1 (GenBank ID YP_209877.1) was able to complement an API-deficient E. coli strain. We demonstrated that Q5LIW1 is inhibited by cytidine 5'-monophospho-3-deoxy-D-manno-2-octulosonic acid, the final product of the Kdo biosynthesis pathway, with a Ki of 1.91 μM. These results support the assertion that Q5LIW1 is the API that supports lipopolysaccharide biosynthesis in B. fragilis and is subject to feedback regulation by CMP-Kdo. The sugar isomerase domain of E. coli KdsD, lacking the two cystathionine beta-synthase domains, demonstrated API activity and was further characterized. These results suggest that Q5LIW1 may be a suitable system to study API structure-function relationships.
阿拉伯糖-5-磷酸异构酶(APIs)催化 d-核酮糖-5-磷酸和 D-阿拉伯糖-5-磷酸的相互转化,这是 3-脱氧-D-甘露-辛酮糖酸(Kdo)生物合成的第一步,Kdo 是革兰氏阴性细菌脂多糖的必需成分。经典的 APIs,如大肠杆菌 KdsD,包含一个糖异构酶结构域和一个串联半胱氨酸β-合酶结构域。尽管进行了大量的研究,但这些 APIs 的结构-功能关系仍知之甚少。我们最近报道了一种仅包含糖异构酶结构域的 API。这种蛋白质,来自大肠杆菌 CFT073 的 c3406,没有已知的生理功能。在这项研究中,我们研究了一种来自厌氧革兰氏阴性细菌脆弱拟杆菌的假定单结构域 API。这种假定的 API(UniProt ID Q5LIW1)是脆弱拟杆菌基因组中唯一与任何已知 API 具有显著同一性的蛋白质,表明它负责脆弱拟杆菌的脂多糖生物合成。我们通过制备重组 Q5LIW1 蛋白(此处使用 UniProt ID Q5LIW1 表示)、体外鉴定其 API 活性并证明编码 Q5LIW1 的基因(GenBank ID YP_209877.1)能够补充 API 缺陷型大肠杆菌菌株来验证这一假设。我们证明 Q5LIW1 被 Kdo 生物合成途径的终产物胞苷 5'-单磷酸-3-脱氧-D-甘露-2-辛酮酸抑制,Ki 值为 1.91 μM。这些结果支持以下观点,即 Q5LIW1 是支持脆弱拟杆菌脂多糖生物合成的 API,并且受到 CMP-Kdo 的反馈调节。大肠杆菌 KdsD 的糖异构酶结构域缺失两个半胱氨酸β-合酶结构域,表现出 API 活性,并进一步进行了表征。这些结果表明,Q5LIW1 可能是研究 API 结构-功能关系的合适系统。