Xu Qingyang, Zhang Chengjin, Zhang Li
School of Mechanical, Electrical & Information Engineering, Shandong University, Weihai 264209, China.
ScientificWorldJournal. 2014;2014:597278. doi: 10.1155/2014/597278. Epub 2014 Apr 27.
Estimation of distribution algorithm (EDA) is an intelligent optimization algorithm based on the probability statistics theory. A fast elitism Gaussian estimation of distribution algorithm (FEGEDA) is proposed in this paper. The Gaussian probability model is used to model the solution distribution. The parameters of Gaussian come from the statistical information of the best individuals by fast learning rule. A fast learning rule is used to enhance the efficiency of the algorithm, and an elitism strategy is used to maintain the convergent performance. The performances of the algorithm are examined based upon several benchmarks. In the simulations, a one-dimensional benchmark is used to visualize the optimization process and probability model learning process during the evolution, and several two-dimensional and higher dimensional benchmarks are used to testify the performance of FEGEDA. The experimental results indicate the capability of FEGEDA, especially in the higher dimensional problems, and the FEGEDA exhibits a better performance than some other algorithms and EDAs. Finally, FEGEDA is used in PID controller optimization of PMSM and compared with the classical-PID and GA.
分布估计算法(EDA)是一种基于概率统计理论的智能优化算法。本文提出了一种快速精英高斯分布估计算法(FEGEDA)。该算法采用高斯概率模型对解的分布进行建模,高斯分布的参数通过快速学习规则从最优个体的统计信息中获得。算法使用快速学习规则提高算法效率,采用精英策略保持算法的收敛性能。通过几个基准测试对算法性能进行了检验。在仿真中,使用一维基准测试来可视化进化过程中的优化过程和概率模型学习过程,使用几个二维和高维基准测试来验证FEGEDA的性能。实验结果表明了FEGEDA的性能,特别是在高维问题中,并且FEGEDA比其他一些算法和分布估计算法表现出更好的性能。最后,将FEGEDA应用于永磁同步电机的PID控制器优化,并与经典PID和遗传算法进行了比较。