1] ICCOM-CNR, via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy [2] Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy.
ICCOM-CNR, via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy.
Nat Commun. 2014 Jun 3;5:4036. doi: 10.1038/ncomms5036.
The energetic convenience of electrolytic water splitting is limited by thermodynamics. Consequently, significant levels of hydrogen production can only be obtained with an electrical energy consumption exceeding 45 kWh kg(-1)H2. Electrochemical reforming allows the overcoming of such thermodynamic limitations by replacing oxygen evolution with the oxidation of biomass-derived alcohols. Here we show that the use of an original anode material consisting of palladium nanoparticles deposited on to a three-dimensional architecture of titania nanotubes allows electrical energy savings up to 26.5 kWh kg(-1)H2 as compared with proton electrolyte membrane water electrolysis. A net energy analysis shows that for bio-ethanol with energy return of the invested energy larger than 5.1 (for example, cellulose), the electrochemical reforming energy balance is advantageous over proton electrolyte membrane water electrolysis.
电解水的能量效率受到热力学的限制。因此,只有当电能消耗超过 45 kWh kg(-1)H2 时,才能获得大量的氢气生产。电化学重整通过用生物质衍生醇的氧化代替氧气的析出,克服了这种热力学限制。在这里,我们展示了一种由钯纳米粒子沉积在三维二氧化钛纳米管结构上的新型阳极材料的使用,可以节省高达 26.5 kWh kg(-1)H2 的电能,与质子交换膜水电解相比。净能分析表明,对于能量回报大于 5.1(例如纤维素)的生物乙醇,电化学重整的能量平衡优于质子交换膜水电解。