1 Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
2 Corinne Goldsmith Dickinson Centre for MS, Mount Sinai Medical Centre, New York, NY 10029, USA.
Brain. 2014 Aug;137(Pt 8):2271-86. doi: 10.1093/brain/awu139. Epub 2014 Jun 3.
Axonal damage is a prominent cause of disability and yet its pathogenesis is incompletely understood. Using a xenogeneic system, here we define the bioenergetic changes induced in rat neurons by exposure to cerebrospinal fluid samples from patients with multiple sclerosis compared to control subjects. A first discovery cohort of cerebrospinal fluid from 13 patients with multiple sclerosis and 10 control subjects showed that acute exposure to cerebrospinal fluid from patients with multiple sclerosis induced oxidative stress and decreased expression of neuroprotective genes, while increasing expression of genes involved in lipid signalling and in the response to oxidative stress. Protracted exposure of neurons to stress led to neurotoxicity and bioenergetics failure after cerebrospinal fluid exposure and positively correlated with the levels of neurofilament light chain. These findings were validated using a second independent cohort of cerebrospinal fluid samples (eight patients with multiple sclerosis and eight control subjects), collected at a different centre. The toxic effect of cerebrospinal fluid on neurons was not attributable to differences in IgG content, glucose, lactate or glutamate levels or differences in cytokine levels. A lipidomic profiling approach led to the identification of increased levels of ceramide C16:0 and C24:0 in the cerebrospinal fluid from patients with multiple sclerosis. Exposure of cultured neurons to micelles composed of these ceramide species was sufficient to recapitulate the bioenergetic dysfunction and oxidative damage induced by exposure to cerebrospinal fluid from patients with multiple sclerosis. Therefore, our data suggest that C16:0 and C24:0 ceramides are enriched in the cerebrospinal fluid of patients with multiple sclerosis and are sufficient to induce neuronal mitochondrial dysfunction and axonal damage.
轴突损伤是导致残疾的一个主要原因,但它的发病机制尚未完全阐明。在这里,我们使用异种体系,定义了与对照组相比,暴露于多发性硬化症患者的脑脊液样本对大鼠神经元引起的生物能变化。在一个包含 13 名多发性硬化症患者和 10 名对照受试者的脑脊液首次发现队列中,研究表明,急性暴露于多发性硬化症患者的脑脊液会引起氧化应激和神经保护基因表达降低,同时增加与脂质信号转导和氧化应激反应相关的基因表达。神经元长时间暴露于应激下会导致暴露于脑脊液后发生神经毒性和生物能衰竭,并且与神经丝轻链的水平呈正相关。这些发现使用第二个独立的脑脊液样本队列(8 名多发性硬化症患者和 8 名对照受试者)进行了验证,该队列是在另一个中心收集的。脑脊液对神经元的毒性作用不能归因于 IgG 含量、葡萄糖、乳酸或谷氨酸水平的差异,也不能归因于细胞因子水平的差异。脂质组学分析方法导致鉴定出多发性硬化症患者的脑脊液中神经酰胺 C16:0 和 C24:0 水平升高。培养的神经元暴露于由这些神经酰胺组成的胶束中足以再现暴露于多发性硬化症患者的脑脊液引起的生物能功能障碍和氧化损伤。因此,我们的数据表明,C16:0 和 C24:0 神经酰胺在多发性硬化症患者的脑脊液中富集,足以诱导神经元线粒体功能障碍和轴突损伤。