Suppr超能文献

G 蛋白偶联受体第二细胞外环结构预测。

Structure prediction of the second extracellular loop in G-protein-coupled receptors.

机构信息

University of Warsaw, Faculty of Chemistry, Laboratory of Theory of Biopolymers, Pasteura 1, 02-093 Warsaw, Poland.

Mossakowski Medical Research Center, Polish Academy of Sciences, Bioinformatics Laboratory, Pawinskiego 5, 02-106 Warsaw, Poland.

出版信息

Biophys J. 2014 Jun 3;106(11):2408-16. doi: 10.1016/j.bpj.2014.04.022.

Abstract

G-protein-coupled receptors (GPCRs) play key roles in living organisms. Therefore, it is important to determine their functional structures. The second extracellular loop (ECL2) is a functionally important region of GPCRs, which poses significant challenge for computational structure prediction methods. In this work, we evaluated CABS, a well-established protein modeling tool for predicting ECL2 structure in 13 GPCRs. The ECL2s (with between 13 and 34 residues) are predicted in an environment of other extracellular loops being fully flexible and the transmembrane domain fixed in its x-ray conformation. The modeling procedure used theoretical predictions of ECL2 secondary structure and experimental constraints on disulfide bridges. Our approach yielded ensembles of low-energy conformers and the most populated conformers that contained models close to the available x-ray structures. The level of similarity between the predicted models and x-ray structures is comparable to that of other state-of-the-art computational methods. Our results extend other studies by including newly crystallized GPCRs.

摘要

G 蛋白偶联受体(GPCRs)在生物体内发挥着关键作用。因此,确定其功能结构非常重要。第二细胞外环(ECL2)是 GPCRs 的一个功能重要区域,这对计算结构预测方法提出了重大挑战。在这项工作中,我们评估了 CABS,这是一种用于预测 13 种 GPCR 中 ECL2 结构的成熟蛋白质建模工具。ECL2(含 13 至 34 个残基)在其他细胞外环完全灵活和跨膜域固定在其 X 射线构象的环境中进行预测。建模过程使用 ECL2 二级结构的理论预测和对二硫键的实验约束。我们的方法产生了低能量构象的集合体和最常见的构象体,其中包含接近现有 X 射线结构的模型。预测模型与 X 射线结构之间的相似性水平与其他最先进的计算方法相当。我们的结果通过包括新结晶的 GPCR 扩展了其他研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2195/4052351/86ebacba186b/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验