Suppr超能文献

使用从头算方法研究呋喃和糠醛碳-碳偶联反应的热化学。

Investigation of thermochemistry associated with the carbon-carbon coupling reactions of furan and furfural using ab initio methods.

作者信息

Liu Cong, Assary Rajeev S, Curtiss Larry A

机构信息

Materials Sciences Division, Argonne National Laboratory , Lemont, Illinois 60439, United States.

出版信息

J Phys Chem A. 2014 Jun 26;118(25):4392-404. doi: 10.1021/jp503702t. Epub 2014 Jun 17.

Abstract

Upgrading furan and small oxygenates obtained from the decomposition of cellulosic materials via formation of carbon-carbon bonds is critical to effective conversion of biomass to liquid transportation fuels. Simulation-driven molecular level understanding of carbon-carbon bond formation is required to design efficient catalysts and processes. Accurate quantum chemical methods are utilized here to predict the reaction energetics for conversion of furan (C4H4O) to C5-C8 ethers and the transformation of furfural (C5H6O2) to C13-C26 alkanes. Furan can be coupled with various C1 to C4 low molecular weight carbohydrates obtained from the pyrolysis via Diels-Alder type reactions in the gas phase to produce C5-C8 cyclic ethers. The computed reaction barriers for these reactions (∼25 kcal/mol) are lower than the cellulose activation or decomposition reactions (∼50 kcal/mol). Cycloaddition of C5-C8 cyclo ethers with furans can also occur in the gas phase, and the computed activation energy is similar to that of the first Diels-Alder reaction. Furfural, obtained from biomass, can be coupled with aldehydes or ketones with α-hydrogen atoms to form longer chain aldol products, and these aldol products can undergo vapor phase hydrocycloaddition (activation barrier of ∼20 kcal/mol) to form the precursors of C26 cyclic hydrocarbons. These thermochemical studies provide the basis for further vapor phase catalytic studies required for upgrading of furans/furfurals to longer chain hydrocarbons.

摘要

通过形成碳-碳键来升级从纤维素材料分解中获得的呋喃和小分子含氧化合物,对于将生物质有效转化为液体运输燃料至关重要。需要通过模拟驱动从分子水平理解碳-碳键的形成,以设计高效的催化剂和工艺。本文利用精确的量子化学方法来预测呋喃(C4H4O)转化为C5 - C8醚以及糠醛(C5H6O2)转化为C13 - C26烷烃的反应能量。呋喃可与通过热解获得的各种C1至C4低分子量碳水化合物在气相中通过狄尔斯-阿尔德型反应偶联,生成C5 - C8环醚。这些反应的计算反应势垒(约25千卡/摩尔)低于纤维素活化或分解反应(约50千卡/摩尔)。C5 - C8环醚与呋喃的环加成反应也可在气相中发生,计算得到的活化能与第一次狄尔斯-阿尔德反应的活化能相似。从生物质中获得的糠醛可与具有α-氢原子的醛或酮偶联,形成更长链的羟醛产物,并且这些羟醛产物可进行气相加氢环化反应(活化势垒约20千卡/摩尔),形成C26环烃的前体。这些热化学研究为呋喃/糠醛升级为更长链烃所需的进一步气相催化研究提供了基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验