Parikh Vinay, Naughton Sean X, Shi Xiangdang, Kelley Leslie K, Yegla Brittney, Tallarida Christopher S, Rawls Scott M, Unterwald Ellen M
Department of Psychology and Neuroscience Program, Temple University, Philadelphia, United States.
Department of Psychology and Neuroscience Program, Temple University, Philadelphia, United States.
Neurochem Int. 2014 Sep;75:54-65. doi: 10.1016/j.neuint.2014.05.016. Epub 2014 Jun 6.
Recent evidence suggests that diminished ability to control cocaine seeking arises from perturbations in glutamate homeostasis in the nucleus accumbens. However, the neurochemical substrates underlying cocaine-induced neuroadaptations in the dorsal striatum and how these mechanisms link to behavioral plasticity is not clear. We employed glutamate-sensitive microelectrodes and amperometry to study the impact of repeated cocaine administration on glutamate dynamics in the dorsolateral striatum of awake freely-moving rats. Depolarization-evoked glutamate release was robustly increased in cocaine-pretreated rats challenged with cocaine. Moreover, the clearance of glutamate signals elicited either by terminal depolarization or blockade of non-neuronal glutamate transporters slowed down dramatically in cocaine-sensitized rats. Repeated cocaine exposure also reduced the neuronal tone of striatal glutamate. Ceftriaxone, a β-lactam antibiotic that activates the astrocytic glutamate transporter, attenuated the effects of repeated cocaine exposure on synaptic glutamate release and glutamate clearance kinetics. Finally, the antagonism of AMPA glutamate receptors in the dorsolateral striatum blocked the development of behavioral sensitization to repeated cocaine administration. Collectively, these data suggest that repeated cocaine exposure disrupts presynaptic glutamate transmission and transporter-mediated clearance mechanisms in the dorsal striatum. Moreover, such alterations produce an over activation of AMPA receptors in this brain region leading to the sensitized behavioral response to repeated cocaine.
最近的证据表明,控制可卡因觅求的能力下降源于伏隔核中谷氨酸稳态的紊乱。然而,可卡因诱导背侧纹状体神经适应性变化的神经化学底物以及这些机制如何与行为可塑性相关尚不清楚。我们使用谷氨酸敏感微电极和安培法来研究重复给予可卡因对清醒自由活动大鼠背外侧纹状体中谷氨酸动力学的影响。在用可卡因激发的可卡因预处理大鼠中,去极化诱发的谷氨酸释放显著增加。此外,在可卡因致敏大鼠中,由终末去极化或非神经元谷氨酸转运体阻断引发的谷氨酸信号清除显著减慢。重复接触可卡因还降低了纹状体谷氨酸的神经元张力。头孢曲松是一种激活星形胶质细胞谷氨酸转运体的β-内酰胺抗生素,它减弱了重复接触可卡因对突触谷氨酸释放和谷氨酸清除动力学的影响。最后,背外侧纹状体中AMPA谷氨酸受体的拮抗作用阻断了对重复给予可卡因行为敏化的发展。总的来说,这些数据表明重复接触可卡因会破坏背侧纹状体中突触前谷氨酸传递和转运体介导的清除机制。此外,这种改变会导致该脑区AMPA受体过度激活,从而导致对重复给予可卡因的行为敏化反应。