Suppr超能文献

苏云金芽孢杆菌库尔斯塔克亚种HD73的kam基因座中赖氨酸-2,3-氨基变位酶基因的转录受σ54和σK因子共同控制。

Transcription of the lysine-2,3-aminomutase gene in the kam locus of Bacillus thuringiensis subsp. kurstaki HD73 is controlled by both σ54 and σK factors.

作者信息

Zhang Zhe, Yang Min, Peng Qi, Wang Guannan, Zheng Qingyun, Zhang Jie, Song Fuping

机构信息

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.

College of Life Sciences, Northeast Agriculture University, Harbin, China.

出版信息

J Bacteriol. 2014 Aug 15;196(16):2934-43. doi: 10.1128/JB.01675-14. Epub 2014 Jun 9.

Abstract

Lysine 2,3-aminomutase (KAM; EC 5.4.3.2) catalyzes the interconversion of l-lysine and l-β-lysine. The transcription and regulation of the kam locus, including lysine-2,3-aminomutase-encoding genes, in Bacillus thuringiensis were analyzed in this study. Reverse transcription-PCR (RT-PCR) analysis revealed that this locus forms two operons: yodT (yodT-yodS-yodR-yodQ-yodP-kamR) and kamA (kamA-yokU-yozE). The transcriptional start sites (TSSs) of the kamA gene were determined using 5' rapid amplification of cDNA ends (RACE). A typical -12/-24 σ(54) binding site was identified in the promoter PkamA, which is located upstream of the kamA gene TSS. A β-galactosidase assay showed that PkamA, which directs the transcription of the kamA operon, is controlled by the σ(54) factor and is activated through the σ(54)-dependent transcriptional regulator KamR. The kamA operon is also controlled by σ(K) and regulated by the GerE protein in the late stage of sporulation. kamR and kamA mutants were prepared by homologous recombination to examine the role of the kam locus. The results showed that the sporulation rate in B. thuringiensis HD(ΔkamR) was slightly decreased compared to that in HD73, whereas that in HD(ΔkamA) was similar to that in HD73. This means that other genes regulated by KamR are important for sporulation.

摘要

赖氨酸2,3-氨基变位酶(KAM;EC 5.4.3.2)催化L-赖氨酸和L-β-赖氨酸的相互转化。本研究分析了苏云金芽孢杆菌中kam基因座的转录和调控,包括赖氨酸-2,3-氨基变位酶编码基因。逆转录聚合酶链反应(RT-PCR)分析表明,该基因座形成两个操纵子:yodT(yodT-yodS-yodR-yodQ-yodP-kamR)和kamA(kamA-yokU-yozE)。使用5' cDNA末端快速扩增(RACE)确定了kamA基因的转录起始位点(TSS)。在位于kamA基因TSS上游的启动子PkamA中鉴定出一个典型的-12 / -24 σ(54)结合位点。β-半乳糖苷酶分析表明,指导kamA操纵子转录的PkamA受σ(54)因子控制,并通过σ(54)依赖性转录调节因子KamR激活。kamA操纵子也受σ(K)控制,并在芽孢形成后期受GerE蛋白调控。通过同源重组制备了kamR和kamA突变体,以研究kam基因座的作用。结果表明,与HD73相比,苏云金芽孢杆菌HD(ΔkamR)的芽孢形成率略有下降,而HD(ΔkamA)的芽孢形成率与HD73相似。这意味着由KamR调控的其他基因对芽孢形成很重要。

相似文献

2
Identification of the promoter in the intergenic region between orf1 and cry8Ea1 controlled by sigma H factor.
Appl Environ Microbiol. 2012 Jun;78(12):4164-8. doi: 10.1128/AEM.00622-12. Epub 2012 Apr 13.
8
Spo0A represses transcription of the cry toxin genes in Bacillus thuringiensis.
Microbiology (Reading). 1997 Aug;143 ( Pt 8):2743-2751. doi: 10.1099/00221287-143-8-2743.
9
Weak transcription of the cry1Ac gene in nonsporulating Bacillus thuringiensis cells.
Appl Environ Microbiol. 2012 Sep;78(18):6466-74. doi: 10.1128/AEM.01229-12. Epub 2012 Jul 6.
10
Transcriptional regulation of the cryIVD gene operon from Bacillus thuringiensis subsp. israelensis.
J Bacteriol. 1995 May;177(9):2283-91. doi: 10.1128/jb.177.9.2283-2291.1995.

引用本文的文献

2
Identification and Functional Characterization of Two Homologous SpoVS Proteins Involved in Sporulation of Bacillus thuringiensis.
Microbiol Spectr. 2021 Oct 31;9(2):e0088121. doi: 10.1128/Spectrum.00881-21. Epub 2021 Oct 6.
4
Compatibility of Site-Specific Recombination Units between Mobile Genetic Elements.
iScience. 2020 Jan 24;23(1):100805. doi: 10.1016/j.isci.2019.100805. Epub 2019 Dec 26.
5
Novel Cell Wall Hydrolase CwlC from Bacillus thuringiensis Is Essential for Mother Cell Lysis.
Appl Environ Microbiol. 2018 Mar 19;84(7). doi: 10.1128/AEM.02640-17. Print 2018 Apr 1.
8
Identification of metabolism pathways directly regulated by sigma(54) factor in Bacillus thuringiensis.
Front Microbiol. 2015 May 12;6:407. doi: 10.3389/fmicb.2015.00407. eCollection 2015.

本文引用的文献

1
Complete Genome Sequence of Bacillus thuringiensis Serovar Israelensis Strain HD-789.
Genome Announc. 2013 Dec 26;1(6):e01023-13. doi: 10.1128/genomeA.01023-13.
2
IMG 4 version of the integrated microbial genomes comparative analysis system.
Nucleic Acids Res. 2014 Jan;42(Database issue):D560-7. doi: 10.1093/nar/gkt963. Epub 2013 Oct 27.
4
Complete genome sequence of Bacillus thuringiensis subsp. kurstaki strain HD73.
Genome Announc. 2013 Mar 14;1(2):e0008013. doi: 10.1128/genomeA.00080-13.
5
Complete Genome Sequence of Bacillus thuringiensis Strain 407 Cry-.
Genome Announc. 2013 Jan;1(1). doi: 10.1128/genomeA.00158-12. Epub 2013 Jan 31.
6
Redundancy and modularity in membrane-associated dissimilatory nitrate reduction in Bacillus.
Front Microbiol. 2012 Oct 18;3:371. doi: 10.3389/fmicb.2012.00371. eCollection 2012.
7
Genomic characterization of the Bacillus cereus sensu lato species: backdrop to the evolution of Bacillus anthracis.
Genome Res. 2012 Aug;22(8):1512-24. doi: 10.1101/gr.134437.111. Epub 2012 May 29.
8
Identification of the promoter in the intergenic region between orf1 and cry8Ea1 controlled by sigma H factor.
Appl Environ Microbiol. 2012 Jun;78(12):4164-8. doi: 10.1128/AEM.00622-12. Epub 2012 Apr 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验