Massa Néstor E, del Campo Leire, De Sousa Meneses Domingos, Echegut Patrick, Martínez-Lope María Jesús, Alonso José Antonio
Laboratorio Nacional de Investigación y Servicios en Espectroscopía Óptica-Centro CEQUINOR, Universidad Nacional de La Plata, C.C. 962, 1900 La Plata, Argentina.
J Phys Condens Matter. 2014 Jul 9;26(27):275901. doi: 10.1088/0953-8984/26/27/275901. Epub 2014 Jun 11.
We report on temperature dependent TmMnO3 far infrared emissivity and reflectivity spectra from 1910 K to 4 K. At the highest temperature the number of infrared bands is lower than that predicted for centrosymmetric P63/mmc (D(4)(6h)) (Z = 2) space group due to high temperature anharmonicity and possible defect induced bitetrahedra misalignments. On cooling, at ~1600 ± 40 K, TmMnO3 goes from non-polar to an antiferroelectric-ferroelectric polar phase reaching the ferroelectric onset at ~700 K. Room temperature reflectivity is fitted using 19 oscillators and this number of phonons is maintained down to 4 K. A weak phonon anomaly in the band profile at 217 cm(-1) (4 K) suggests subtle Rare Earth magneto-electric couplings at ~TN and below. A low energy collective excitation is identified as a THz instability associated with room temperature eg electrons in a d-orbital fluctuating environment. It condenses into two modes that emerge pinned to the E-type antiferromagnetic order hardening simultaneously down to 4 K. They obey power laws with TN as the critical temperature and match known zone center magnons. The one peaking at 26 cm(-1), with critical exponent β=0.42 as for antiferromagnetic order in a hexagonal lattice, is dependent on the Rare Earth ion. The higher frequency companion at ~50 cm(-1), with β=0.25, splits at ~TN into two peaks. The weaker band of the two is assimilated to the upper branch of the gap opening in the transverse acoustical (TA) phonon branch crossing the magnetic dispersion found in YMnO3. (Petit et al 2007 Phys. Rev. Lett. 99 266604). The stronger second band at ~36 cm(-1) corresponds to the lower branch of the TA gap. We assign both excitations as zone center magneto-electric hybrid quasiparticles, concluding that in NdMnO3 perovskite the equivalent picture corresponds to an instability which may be driven by an external field to transform NdMnO3 into a multiferroic compound by perturbation enhancing the TA phonon-magnetic correlation.
我们报道了TmMnO₃在1910 K至4 K温度范围内的远红外发射率和反射率光谱。在最高温度下,由于高温非谐性以及可能由缺陷引起的双四面体错位,红外波段的数量低于中心对称P63/mmc(D(4)(6h))(Z = 2)空间群的预测值。在冷却过程中,在约1600±40 K时,TmMnO₃从非极性转变为反铁电 - 铁电极性相,在约700 K时达到铁电起始温度。室温反射率用19个振子进行拟合,并且这个声子数量一直保持到4 K。在217 cm⁻¹(4 K)处的能带轮廓中存在一个微弱的声子异常,这表明在约居里温度(TN)及以下存在微妙的稀土磁电耦合。一种低能集体激发被确定为与d轨道波动环境中的室温eg电子相关的太赫兹不稳定性。它凝聚成两种模式,这两种模式在E型反铁磁序下被钉扎,同时硬化至4 K。它们遵循以TN为临界温度的幂律,并且与已知的区中心磁振子相匹配。在26 cm⁻¹处峰值的那个模式,其临界指数β = 0.42,如同六角晶格中的反铁磁序,它依赖于稀土离子。在约50 cm⁻¹处的较高频率伴峰,β = 0.25,在约TN处分裂成两个峰。两者中较弱的那个峰被归为横声学(TA)声子分支中能隙打开的上支,该分支与在YMnO₃中发现的磁色散相交。在约36 cm⁻¹处较强的第二个峰对应于TA能隙的下支。我们将这两种激发都归为区中心磁电混合准粒子,得出结论:在钕锰氧化物钙钛矿中,等效情况对应于一种不稳定性,这种不稳定性可能由外部场驱动,通过增强TA声子 - 磁相关性的微扰将钕锰氧化物转变为多铁性化合物。(Petit等人,2007年,《物理评论快报》99卷,266604页)