Department of Water Technology & Environmental Engineering, Institute of Chemical Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic; Department of Civil & Environmental Engineering, University of South Florida, 4202 E. Fowler Ave, ENB 118, Tampa, FL 33620, USA.
Department of Civil & Environmental Engineering, University of South Florida, 4202 E. Fowler Ave, ENB 118, Tampa, FL 33620, USA.
Water Res. 2014 Sep 15;61:191-9. doi: 10.1016/j.watres.2014.05.030. Epub 2014 May 28.
Nitrogen discharges from decentralized wastewater treatment (DWT) systems contribute to surface and groundwater contamination. However, the high variability in loading rates, long idle periods and lack of regular maintenance presents a challenge for biological nitrogen removal in DWT. A Tire-Sulfur Hybrid Adsorption Denitrification (T-SHAD) process was developed that combines nitrate (NO3(-)) adsorption to scrap tire chips with sulfur-oxidizing denitrification. This allows the tire chips to adsorb NO3(-) when the influent loading exceeds the denitrification capacity of the biofilm and release it when NO3(-) loading rates are low (e.g. at night). Three waste products, scrap tire chips, elemental sulfur pellets and crushed oyster shells, were used as a medium in adsorption, leaching, microcosm and up-flow packed bed bioreactor studies of NO3(-) removal from synthetic nitrified DWT wastewater. Adsorption isotherms showed that scrap tire chips have an adsorption capacity of 0.66 g NO3(-)-N kg(-1) of scrap tires. Leaching and microcosm studies showed that scrap tires leach bioavailable organic carbon that can support mixotrophic metabolism, resulting in lower effluent SO4(2-) concentrations than sulfur oxidizing denitrification alone. In column studies, the T-SHAD process achieved high NO3(-)-N removal efficiencies under steady state (90%), variable flow (89%) and variable concentration (94%) conditions.
分散式污水处理 (DWT) 系统排放的氮会导致地表水和地下水的污染。然而,负荷率变化大、闲置时间长且缺乏定期维护等问题,给 DWT 中的生物脱氮带来了挑战。本研究开发了一种轮胎-硫混合吸附反硝化 (T-SHAD) 工艺,将硝酸盐 (NO3(-)) 吸附到废轮胎屑上,并与硫氧化反硝化相结合。当进水负荷超过生物膜的反硝化能力时,轮胎屑会吸附 NO3(-),而当 NO3(-) 负荷较低时(例如夜间),又会将其释放。研究采用三种废弃物,即废轮胎屑、元素硫颗粒和碎牡蛎壳,作为吸附、浸出、微宇宙和上流填充床生物反应器中从合成硝化 DWT 废水中去除 NO3(-) 的介质。吸附等温线表明,废轮胎屑的吸附容量为 0.66 g NO3(-)-N kg(-1) 废轮胎。浸出和微宇宙研究表明,废轮胎会浸出生物可利用的有机碳,从而支持混合营养代谢,导致比单独硫氧化反硝化更低的出水 SO4(2-) 浓度。在柱研究中,T-SHAD 工艺在稳定状态(90%)、变流量(89%)和变浓度(94%)条件下均实现了高的 NO3(-)-N 去除效率。