Suppr超能文献

利用相互作用原子的三维概率分布预测蛋白质表面的脂肪酸结合残基。

Prediction of fatty acid-binding residues on protein surfaces with three-dimensional probability distributions of interacting atoms.

作者信息

Mahalingam Rajasekaran, Peng Hung-Pin, Yang An-Suei

机构信息

Genomics Research Center, Academia Sinica, Taipei 115, Taiwan.

Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; Institute of Biomedical Informatics, National Yang-Ming University, Taipei 11221, Taiwan; Bioinformatics Program, Taiwan International Graduate Program, Institute of Information Science, Academia Sinica, Taipei 115, Taiwan.

出版信息

Biophys Chem. 2014 Aug;192:10-9. doi: 10.1016/j.bpc.2014.05.002. Epub 2014 May 29.

Abstract

Protein-fatty acid interaction is vital for many cellular processes and understanding this interaction is important for functional annotation as well as drug discovery. In this work, we present a method for predicting the fatty acid (FA)-binding residues by using three-dimensional probability density distributions of interacting atoms of FAs on protein surfaces which are derived from the known protein-FA complex structures. A machine learning algorithm was established to learn the characteristic patterns of the probability density maps specific to the FA-binding sites. The predictor was trained with five-fold cross validation on a non-redundant training set and then evaluated with an independent test set as well as on holo-apo pair's dataset. The results showed good accuracy in predicting the FA-binding residues. Further, the predictor developed in this study is implemented as an online server which is freely accessible at the following website, http://ismblab.genomics.sinica.edu.tw/.

摘要

蛋白质-脂肪酸相互作用对许多细胞过程至关重要,理解这种相互作用对于功能注释以及药物发现都很重要。在这项工作中,我们提出了一种通过使用蛋白质表面脂肪酸(FA)相互作用原子的三维概率密度分布来预测FA结合残基的方法,这些分布来自已知的蛋白质-FA复合物结构。建立了一种机器学习算法来学习FA结合位点特有的概率密度图的特征模式。该预测器在一个非冗余训练集上进行了五折交叉验证训练,然后在一个独立测试集以及全蛋白-无配体对数据集上进行了评估。结果表明在预测FA结合残基方面具有良好的准确性。此外,本研究开发的预测器作为一个在线服务器实现,可通过以下网站免费访问:http://ismblab.genomics.sinica.edu.tw/

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验