Sen Ananya, Luxford Thomas F M, Yoshikawa Naruo, Dessent Caroline E H
Department of Chemistry, University of York, Heslington, York YO10 5DD, UK.
Phys Chem Chem Phys. 2014 Aug 7;16(29):15490-500. doi: 10.1039/c4cp00989d.
Isolated molecular clusters of adenine, cytosine, thymine and uracil with Pt(CN)6(2-) and Pt(CN)4(2-) were studied for the first time to characterize the binding and reactivity of isolated transition metal complex ions with nucleobases. These clusters represent model systems for understanding metal complex-DNA adducts, as a function of individual nucleobases. Collisional excitation revealed that the clusters decay on the ground electronic surface by either solvent evaporation (i.e. loss of a nucleobase unit from the cluster) or via proton transfer from the nucleobase to the dianion. The Pt(CN)6(2-)-nucleobase clusters decay only by solvent evaporation, while the Pt(CN)4(2-) clusters fragment by both pathways. The enhanced proton-transfer reactivity of Pt(CN)4(2-) is attributed to the higher charge-density of the ligands in this transition metal anion. % fragmentation curves of the clusters reveal that the adenine clusters display distinctively higher fragmentation onsets, which are traced to the propensity of adenine to form the shortest intercluster H-bond. We also present laser electronic photodissociation measurements for the Pt(CN)6(2-)·Ur, Pt(CN)4(2-)·Ur and Pt(CN)4(2-)·Ur2 clusters to illustrate the potential of exploring metal complex DNA photophysics as a function of nucleobase within well-defined gaseous clusters. The spectra reported herein represent the first such measurements. We find that the electronic excited states decay with production of the same fragments (associated with solvent evaporation and proton transfer) observed upon collisional excitation of the electronic ground state, indicating ultrafast deactivation of the excited-state uracil-localized chromophore followed by vibrational predissociation.
首次研究了腺嘌呤、胞嘧啶、胸腺嘧啶和尿嘧啶与Pt(CN)6(2-)和Pt(CN)4(2-)形成的孤立分子簇,以表征孤立的过渡金属络合离子与核碱基的结合和反应活性。这些簇代表了用于理解金属络合物-DNA加合物的模型系统,它是单个核碱基的函数。碰撞激发表明,这些簇在基态电子表面通过溶剂蒸发(即从簇中失去一个核碱基单元)或通过质子从核碱基转移到二价阴离子而衰变。Pt(CN)6(2-)-核碱基簇仅通过溶剂蒸发衰变,而Pt(CN)4(2-)簇通过两种途径碎片化。Pt(CN)4(2-)增强的质子转移反应活性归因于该过渡金属阴离子中配体的更高电荷密度。簇的%碎片化曲线表明,腺嘌呤簇显示出明显更高的碎片化起始点,这可追溯到腺嘌呤形成最短簇间氢键的倾向。我们还展示了对Pt(CN)6(2-)·Ur、Pt(CN)4(2-)·Ur和Pt(CN)4(2-)·Ur2簇的激光电子光解离测量,以说明在定义明确的气态簇中探索金属络合物DNA光物理作为核碱基函数的潜力。本文报道的光谱代表了首次此类测量。我们发现,电子激发态衰变产生的碎片与基态电子碰撞激发时观察到的相同(与溶剂蒸发和质子转移相关),表明激发态尿嘧啶定位发色团超快失活,随后是振动预解离。