Vaarhorst Anika A M, Verhoeven Aswin, Weller Claudia M, Böhringer Stefan, Göraler Sibel, Meissner Axel, Deelder André M, Henneman Peter, Gorgels Anton P M, van den Brandt Piet A, Schouten Leo J, van Greevenbroek Marleen M, Merry Audrey H H, Verschuren W M Monique, van den Maagdenberg Arn M J M, van Dijk Ko Willems, Isaacs Aaron, Boomsma Dorret, Oostra Ben A, van Duijn Cornelia M, Jukema J Wouter, Boer Jolanda M A, Feskens Edith, Heijmans Bastiaan T, Slagboom P Eline
Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands.
Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands.
Am Heart J. 2014 Jul;168(1):45-52.e7. doi: 10.1016/j.ahj.2014.01.019. Epub 2014 Apr 4.
Metabolomics, defined as the comprehensive identification and quantification of low-molecular-weight metabolites to be found in a biological sample, has been put forward as a potential tool for classifying individuals according to their risk of coronary heart disease (CHD). Here, we investigated whether a single-point blood measurement of the metabolome is associated with and predictive for the risk of CHD.
We obtained proton nuclear magnetic resonance spectra in 79 cases who developed CHD during follow-up (median 8.1 years) and in 565 randomly selected individuals. In these spectra, 100 signals representing 36 metabolites were identified. Applying least absolute shrinkage and selection operator regression, we defined a weighted metabolite score consisting of 13 proton nuclear magnetic resonance signals that optimally predicted CHD. This metabolite score, including signals representing a lipid fraction, glucose, valine, ornithine, glutamate, creatinine, glycoproteins, citrate, and 1.5-anhydrosorbitol, was associated with the incidence of CHD independent of traditional risk factors (TRFs) (hazard ratio 1.50, 95% CI 1.12-2.01). Predictive performance of this metabolite score on its own was moderate (C-index 0.75, 95% CI 0.70-0.80), but after adding age and sex, the C-index was only modestly lower than that of TRFs (C-index 0.81, 95% CI 0.77-0.85 and C-index 0.82, 95% CI 0.78-0.87, respectively). The metabolite score was also associated with prevalent CHD independent of TRFs (odds ratio 1.59, 95% CI 1.19-2.13).
A metabolite score derived from a single-point metabolome measurement is associated with CHD, and metabolomics may be a promising tool for refining and improving the prediction of CHD.
代谢组学被定义为对生物样本中发现的低分子量代谢物进行全面鉴定和定量,已被提出作为根据个体患冠心病(CHD)风险进行分类的潜在工具。在此,我们研究了代谢组的单点血液测量是否与冠心病风险相关并具有预测性。
我们获得了79例在随访期间(中位时间8.1年)发生冠心病的患者以及565例随机选择个体的质子核磁共振谱。在这些谱图中,鉴定出了代表36种代谢物的100个信号。应用最小绝对收缩和选择算子回归,我们定义了一个由13个质子核磁共振信号组成的加权代谢物评分,该评分能最佳地预测冠心病。这个代谢物评分,包括代表脂质组分、葡萄糖、缬氨酸、鸟氨酸、谷氨酸、肌酐、糖蛋白、柠檬酸盐和1,5 - 脱水山梨醇的信号,与冠心病的发病率相关,且独立于传统风险因素(TRFs)(风险比1.50,95%可信区间1.12 - 2.01)。该代谢物评分自身的预测性能中等(C指数0.75,95%可信区间0.70 - 0.80),但在加入年龄和性别后,C指数仅略低于传统风险因素的C指数(分别为C指数0.81,95%可信区间0.77 - 0.85和C指数0.82,95%可信区间0.78 - 0.87)。该代谢物评分也与现患冠心病相关,且独立于传统风险因素(优势比1.59,95%可信区间1.19 - 2.13)。
从单点代谢组测量得出的代谢物评分与冠心病相关,代谢组学可能是一种用于优化和改进冠心病预测的有前景的工具。