Suppr超能文献

不断增长的人类相互作用组数据的拓扑结构。

The topology of the growing human interactome data.

作者信息

Janjić Vuk, Pržulj Nataša

机构信息

Department of Computing, Imperial College London, London, SW7 2RH, United Kingdom.

出版信息

J Integr Bioinform. 2014 Jun 23;11(2):238. doi: 10.2390/biecoll-jib-2014-238.

Abstract

We have long moved past the one-gene–one-function concept originally proposed by Beadle and Tatum back in 1941; but the full understanding of genotype–phenotype relations still largely relies on the analysis of static, snapshot-like, interaction data sets. Here, we look at what global patterns can be uncovered if we simply trace back the human interactome network over the last decade of protein- protein interaction (PPI) screening. We take a purely topological approach and find that as the human interactome is getting denser, it is not only gaining in structure (in terms of now being better fit by structured network models than before), but also there are patterns in the way in which it is growing: (a) newly added proteins tend to get linked to existing proteins in the interactome that are not know to interact; and (b) new proteins tend to link to already well connected proteins. Moreover, the alignment between human and yeast interactomes spanning over 40% of yeast’s proteins — that are involved in regulation of transcription, RNA splicing and other cellcycle-related processes—suggests the existence of a part of the interactome which remains topologically and functionally unaffected through evolution. Furthermore, we find a small sub-network, specific to the “core” of the human interactome and involved in regulation of transcription and cancer development, whose wiring has not changed within the human interactome over the last 10 years of interacome data acquisition. Finally, we introduce a generalisation of the clustering coefficient of a network as a new measure called the cycle coefficient, and use it to show that PPI networks of human and model organisms are wired in a tight way which forbids the occurrence large cycles.

摘要

我们早已摒弃了1941年由比德尔和塔特姆最初提出的一个基因对应一种功能的概念;但对基因型与表型关系的全面理解在很大程度上仍依赖于对静态、类似快照的相互作用数据集的分析。在此,我们探讨如果仅追溯过去十年蛋白质 - 蛋白质相互作用(PPI)筛选中的人类相互作用组网络,能发现哪些全局模式。我们采用一种纯粹的拓扑学方法,发现随着人类相互作用组变得更加密集,它不仅在结构上有所增益(就现在比以前更适合结构化网络模型而言),而且其增长方式也存在模式:(a)新添加的蛋白质倾向于与相互作用组中已知不相互作用的现有蛋白质相连;(b)新蛋白质倾向于与已经连接良好的蛋白质相连。此外,人类与酵母相互作用组之间的比对涵盖了酵母40%以上的蛋白质——这些蛋白质参与转录调控、RNA剪接和其他细胞周期相关过程——这表明存在一部分相互作用组在进化过程中拓扑结构和功能上未受影响。此外,我们发现一个特定于人类相互作用组“核心”且参与转录调控和癌症发展的小子网,在过去十年的相互作用组数据获取过程中,其连接方式在人类相互作用组中未发生变化。最后,我们引入网络聚类系数的一种推广形式,称为循环系数,并用它来表明人类和模式生物的PPI网络连接紧密,禁止出现大循环。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验