Suppr超能文献

嘧啶核苷酸的区域选择性化学酶促合成有助于RNA结构和动力学研究。

Regio-selective chemical-enzymatic synthesis of pyrimidine nucleotides facilitates RNA structure and dynamics studies.

作者信息

Alvarado Luigi J, LeBlanc Regan M, Longhini Andrew P, Keane Sarah C, Jain Niyati, Yildiz Zehra F, Tolbert Blanton S, D'Souza Victoria M, Summers Michael F, Kreutz Christoph, Dayie T Kwaku

机构信息

Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, 1115 Biomolecular Sciences Building, College Park, MD 20782 (USA).

出版信息

Chembiochem. 2014 Jul 21;15(11):1573-7. doi: 10.1002/cbic.201402130. Epub 2014 Jun 20.

Abstract

Isotope labeling has revolutionized NMR studies of small nucleic acids, but to extend this technology to larger RNAs, site-specific labeling tools to expedite NMR structural and dynamics studies are required. Using enzymes from the pentose phosphate pathway, we coupled chemically synthesized uracil nucleobase with specifically (13) C-labeled ribose to synthesize both UTP and CTP in nearly quantitative yields. This chemoenzymatic method affords a cost-effective preparation of labels that are unattainable by current methods. The methodology generates versatile (13) C and (15) N labeling patterns which, when employed with relaxation-optimized NMR spectroscopy, effectively mitigate problems of rapid relaxation that result in low resolution and sensitivity. The methodology is demonstrated with RNAs of various sizes, complexity, and function: the exon splicing silencer 3 (27 nt), iron responsive element (29 nt), Pro-tRNA (76 nt), and HIV-1 core encapsidation signal (155 nt).

摘要

同位素标记彻底改变了小分子核酸的核磁共振(NMR)研究,但要将这项技术扩展到更大的RNA,就需要位点特异性标记工具来加快NMR结构和动力学研究。利用磷酸戊糖途径中的酶,我们将化学合成的尿嘧啶核苷碱基与特异性(13)C标记的核糖偶联,以近乎定量的产率合成了UTP和CTP。这种化学酶法提供了一种经济高效的标记制备方法,这是目前方法无法实现的。该方法可生成通用的(13)C和(15)N标记模式,与弛豫优化的NMR光谱法一起使用时,可有效缓解导致低分辨率和低灵敏度的快速弛豫问题。该方法已在各种大小、复杂性和功能的RNA上得到验证:外显子剪接沉默子3(27个核苷酸)、铁反应元件(29个核苷酸)、原tRNA(76个核苷酸)和HIV-1核心包装信号(155个核苷酸)。

相似文献

1
Regio-selective chemical-enzymatic synthesis of pyrimidine nucleotides facilitates RNA structure and dynamics studies.
Chembiochem. 2014 Jul 21;15(11):1573-7. doi: 10.1002/cbic.201402130. Epub 2014 Jun 20.
2
Chemo-enzymatic synthesis of selectively ¹³C/¹⁵N-labeled RNA for NMR structural and dynamics studies.
Methods Enzymol. 2014;549:133-62. doi: 10.1016/B978-0-12-801122-5.00007-6.
4
Synthesis of (6-(13)C)pyrimidine nucleotides as spin-labels for RNA dynamics.
J Am Chem Soc. 2012 May 2;134(17):7558-69. doi: 10.1021/ja302148g. Epub 2012 Apr 19.
7
Enzymatic de novo pyrimidine nucleotide synthesis.
J Am Chem Soc. 2011 Jan 19;133(2):297-304. doi: 10.1021/ja1059685. Epub 2010 Dec 17.
8
Asymmetry of (13)C labeled 3-pyruvate affords improved site specific labeling of RNA for NMR spectroscopy.
J Biomol NMR. 2011 Dec;51(4):505-17. doi: 10.1007/s10858-011-9581-6. Epub 2011 Oct 30.
9
Asymmetry of 13C labeled 3-pyruvate affords improved site specific labeling of RNA for NMR spectroscopy.
J Biomol NMR. 2012 Jan;52(1):65-77. doi: 10.1007/s10858-011-9582-5. Epub 2011 Nov 17.
10
Stable isotope-labeled RNA phosphoramidites to facilitate dynamics by NMR.
Methods Enzymol. 2015;565:461-94. doi: 10.1016/bs.mie.2015.06.013. Epub 2015 Jul 9.

引用本文的文献

1
Consolidated 3‑Fold Isotopic Lens for Probing RNAs.
ACS Bio Med Chem Au. 2025 Jun 17;5(4):694-705. doi: 10.1021/acsbiomedchemau.5c00075. eCollection 2025 Aug 20.
2
Selective [9-N] Guanosine for Nuclear Magnetic Resonance Studies of Large Ribonucleic Acids.
Chembiochem. 2025 Jun 16;26(12):e202500206. doi: 10.1002/cbic.202500206. Epub 2025 May 23.
3
Relaxation Optimized Heteronuclear Experiments for Extending the Size Limit of RNA Nuclear Magnetic Resonance.
J Am Chem Soc. 2025 Apr 2;147(13):11179-11188. doi: 10.1021/jacs.4c17823. Epub 2025 Mar 18.
4
Isotope Labels Combined with Solution NMR Spectroscopy Make Visible the Invisible Conformations of Small-to-Large RNAs.
Chem Rev. 2022 May 25;122(10):9357-9394. doi: 10.1021/acs.chemrev.1c00845. Epub 2022 Apr 20.
5
Synthesis of [7-N]-GTPs for RNA structure and dynamics by NMR spectroscopy.
Monatsh Chem. 2022;153(3):293-299. doi: 10.1007/s00706-022-02892-1. Epub 2022 Feb 26.
6
Isotope-Labeled RNA Building Blocks for NMR Structure and Dynamics Studies.
Molecules. 2021 Sep 14;26(18):5581. doi: 10.3390/molecules26185581.
7
Quantifying the effects of long-range C-C dipolar coupling on measured relaxation rates in RNA.
J Biomol NMR. 2021 May;75(4-5):203-211. doi: 10.1007/s10858-021-00368-8. Epub 2021 Apr 29.
8
Solution NMR readily reveals distinct structural folds and interactions in doubly C- and F-labeled RNAs.
Sci Adv. 2020 Oct 7;6(41). doi: 10.1126/sciadv.abc6572. Print 2020 Oct.

本文引用的文献

1
A suite of solid-state NMR experiments for RNA intranucleotide resonance assignment in a 21 kDa protein-RNA complex.
Angew Chem Int Ed Engl. 2013 Sep 16;52(38):9996-10001. doi: 10.1002/anie.201304779. Epub 2013 Jul 26.
2
A decade of riboswitches.
Cell. 2013 Jan 17;152(1-2):17-24. doi: 10.1016/j.cell.2012.12.024.
3
Database proton NMR chemical shifts for RNA signal assignment and validation.
J Biomol NMR. 2013 Jan;55(1):33-46. doi: 10.1007/s10858-012-9683-9. Epub 2012 Nov 23.
4
Mechanisms of mammalian iron homeostasis.
Biochemistry. 2012 Jul 24;51(29):5705-24. doi: 10.1021/bi300752r. Epub 2012 Jul 9.
5
Synthesis of (6-(13)C)pyrimidine nucleotides as spin-labels for RNA dynamics.
J Am Chem Soc. 2012 May 2;134(17):7558-69. doi: 10.1021/ja302148g. Epub 2012 Apr 19.
6
Identification of a minimal region of the HIV-1 5'-leader required for RNA dimerization, NC binding, and packaging.
J Mol Biol. 2012 Mar 30;417(3):224-39. doi: 10.1016/j.jmb.2012.01.033. Epub 2012 Jan 27.
7
Solution structure of the HIV-1 exon splicing silencer 3.
J Mol Biol. 2012 Jan 27;415(4):680-98. doi: 10.1016/j.jmb.2011.11.034. Epub 2011 Nov 29.
8
Asymmetry of 13C labeled 3-pyruvate affords improved site specific labeling of RNA for NMR spectroscopy.
J Biomol NMR. 2012 Jan;52(1):65-77. doi: 10.1007/s10858-011-9582-5. Epub 2011 Nov 17.
9
NMR detection of structures in the HIV-1 5'-leader RNA that regulate genome packaging.
Science. 2011 Oct 14;334(6053):242-5. doi: 10.1126/science.1210460.
10
Measurement of (1)H-(15)N and (1)H-(13)C residual dipolar couplings in nucleic acids from TROSY intensities.
J Biomol NMR. 2011 Sep;51(1-2):89-103. doi: 10.1007/s10858-011-9544-y. Epub 2011 Sep 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验