Suppr超能文献

内部气氛对果实成熟和贮藏性的作用——综述。

Role of internal atmosphere on fruit ripening and storability-a review.

机构信息

Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, 110 012 India.

出版信息

J Food Sci Technol. 2014 Jul;51(7):1223-50. doi: 10.1007/s13197-011-0583-x. Epub 2011 Nov 26.

Abstract

Concentrations of different gases and volatiles present or produced inside a fruit are determined by the permeability of the fruit tissue to these compounds. Primarily, surface morphology and anatomical features of a given fruit determine the degree of permeance across the fruit. Species and varietal variability in surface characteristics and anatomical features therefore influence not only the diffusibility of gases and volatiles across the fruits but also the activity and response of various metabolic and physiological reactions/processes regulated by these compounds. Besides the well-known role of ethylene, gases and volatiles; O2, CO2, ethanol, acetaldehyde, water vapours, methyl salicylate, methyl jasmonate and nitric oxide (NO) have the potential to regulate the process of ripening individually and also in various interactive ways. Differences in the prevailing internal atmosphere of the fruits may therefore be considered as one of the causes behind the existing varietal variability of fruits in terms of rate of ripening, qualitative changes, firmness, shelf-life, ideal storage requirement, extent of tolerance towards reduced O2 and/or elevated CO2, transpirational loss and susceptibility to various physiological disorders. In this way, internal atmosphere of a fruit (in terms of different gases and volatiles) plays a critical regulatory role in the process of fruit ripening. So, better and holistic understanding of this internal atmosphere along with its exact regulatory role on various aspects of fruit ripening will facilitate the development of more meaningful, refined and effective approaches in postharvest management of fruits. Its applicability, specially for the climacteric fruits, at various stages of the supply chain from growers to consumers would assist in reducing postharvest losses not only in quantity but also in quality.

摘要

水果内部存在或产生的不同气体和挥发性物质的浓度取决于这些化合物通过水果组织的渗透性。主要是,给定水果的表面形态和解剖特征决定了水果的渗透率。因此,表面特征和解剖特征的物种和品种变异性不仅影响气体和挥发性物质在水果中的扩散性,还影响受这些化合物调节的各种代谢和生理反应/过程的活性和反应。除了乙烯气体和挥发性物质的众所周知的作用外,O2、CO2、乙醇、乙醛、水蒸气、水杨酸甲酯、茉莉酸甲酯和一氧化氮(NO)也有可能单独调节成熟过程,也可以以各种相互作用的方式进行调节。因此,水果内部盛行的大气差异可以被认为是导致水果在成熟速度、定性变化、硬度、货架期、理想储存要求、对低 O2 和/或高 CO2 的耐受性程度、蒸腾损失和对各种生理障碍的敏感性方面存在品种变异性的原因之一。这样,水果的内部大气(就不同的气体和挥发性物质而言)在水果成熟过程中起着关键的调节作用。因此,更好地、全面地了解这种内部大气及其对水果成熟各个方面的确切调节作用,将有助于在水果采后管理中开发更有意义、更精细和更有效的方法。其适用性,特别是对于跃变型水果,在从种植者到消费者的供应链的各个阶段,将有助于不仅在数量上,而且在质量上减少采后损失。

相似文献

1
Role of internal atmosphere on fruit ripening and storability-a review.
J Food Sci Technol. 2014 Jul;51(7):1223-50. doi: 10.1007/s13197-011-0583-x. Epub 2011 Nov 26.
2
Time-Sensitive Aspects of Mars Sample Return (MSR) Science.
Astrobiology. 2022 Jun;22(S1):S81-S111. doi: 10.1089/AST.2021.0115. Epub 2022 May 19.
3
Development of Metal-Organic Framework for Gaseous Plant Hormone Encapsulation To Manage Ripening of Climacteric Produce.
J Agric Food Chem. 2016 Jun 29;64(25):5164-70. doi: 10.1021/acs.jafc.6b02072. Epub 2016 Jun 20.
7
Nitric oxide: A radical molecule with potential biotechnological applications in fruit ripening.
J Biotechnol. 2020 Dec 20;324:211-219. doi: 10.1016/j.jbiotec.2020.10.020. Epub 2020 Oct 25.
8
Insights into phytonutrient profile and postharvest quality management of jackfruit: A review.
Crit Rev Food Sci Nutr. 2024;64(19):6756-6782. doi: 10.1080/10408398.2023.2174947. Epub 2023 Feb 15.
9
Postharvest biology and technology of pomegranate.
J Sci Food Agric. 2015 Sep;95(12):2360-79. doi: 10.1002/jsfa.7069. Epub 2015 Mar 19.
10
Tragacanth gum coating suppresses the disassembly of cell wall polysaccharides and delays softening of harvested mango (Mangifera indica L.) fruit.
Int J Biol Macromol. 2022 Dec 1;222(Pt A):521-532. doi: 10.1016/j.ijbiomac.2022.09.159. Epub 2022 Sep 19.

引用本文的文献

3
Kiwifruit in the Omics Age: Advances in Genomics, Breeding, and Beyond.
Plants (Basel). 2024 Aug 3;13(15):2156. doi: 10.3390/plants13152156.
6
Heterologous Overexpression of Apple Promotes Fruit Ripening in Tomato.
Plants (Basel). 2023 Aug 2;12(15):2848. doi: 10.3390/plants12152848.
9
Sugar sensation and mechanosensation in the egg-laying preference shift of .
Elife. 2022 Nov 18;11:e81703. doi: 10.7554/eLife.81703.
10

本文引用的文献

1
Nitric oxide signalling in plants.
New Phytol. 2003 Jul;159(1):11-35. doi: 10.1046/j.1469-8137.2003.00804.x.
2
1H-Nuclear magnetic resonance imaging of ripening 'Kensington Pride' mango fruit.
Funct Plant Biol. 2002 Jul;29(7):873-879. doi: 10.1071/PP01150.
3
Evaluation of heat shrinkable films for shelf life, and quality of individually wrapped Royal Delicious apples under ambient conditions.
J Food Sci Technol. 2013 Jun;50(3):590-4. doi: 10.1007/s13197-011-0332-1. Epub 2011 Mar 30.
4
Effects of modified atmosphere packaging on quality of 'Alphonso' Mangoes.
J Food Sci Technol. 2012 Dec;49(6):721-8. doi: 10.1007/s13197-010-0215-x. Epub 2011 Mar 23.
6
Salicylic acid: A new inhibitor of ethylene biosynthesis.
Plant Cell Rep. 1986 Apr;5(2):144-6. doi: 10.1007/BF00269255.
7
Extension of shelf life of pear fruits using different packaging materials.
J Food Sci Technol. 2012 Oct;49(5):556-63. doi: 10.1007/s13197-011-0305-4. Epub 2011 Feb 2.
9
Ripening of tomato (Solanum lycopersicum L.). Part II: Regulation by its stem scar region.
J Food Sci Technol. 2010 Oct;47(5):527-33. doi: 10.1007/s13197-010-0089-y. Epub 2010 Oct 9.
10
Ripening of tomato (Solanum lycopersicum L.). Part I: 1-methylcyclopropene mediated delay at higher storage temperature.
J Food Sci Technol. 2010 Oct;47(5):519-26. doi: 10.1007/s13197-010-0090-5. Epub 2010 Oct 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验