Department of Chemistry, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States.
J Am Chem Soc. 2014 Jul 30;136(30):10669-82. doi: 10.1021/ja5041557. Epub 2014 Jul 21.
Cyclophanes, especially those where pyridinium units in conjugation with each other are linked up face-to-face within platforms that are held approximately 7 Å apart by rigid linkers, are capable of forming inclusion complexes with polycyclic aromatic hydrocarbons (PAHs) with high binding affinities as a result of a combination of noncovalent bonding interactions, including face-to-face [π···π] stacking and orthogonal [C-H···π] interactions. Here, we report the template-directed, catalyst-assisted synthesis of a three-fold symmetric, extended pyridinium-based, cage-like host (ExCage(6+)) containing a total of six π-electron-deficient pyridinium units connected in a pairwise fashion by three bridging p-xylylene linkers, displayed in a trigonal (1,3,5) fashion around two opposing and parallel 1,3,5-tris(4-pyridinium)benzene platforms. The association constants (K(a)) of eight complexes have been measured by isothermal titration calorimetry (ITC) in acetonitrile and were found to span the range from 2.82 × 10(3) for naphthalene up to 5.5 × 10(6) M(-1) for perylene. The barriers to decomplexation, which were measured in DMF-d7 for phenanthrene, pyrene, triphenylene, and coronene by dynamic (1)H NMR spectroscopy undergo significant stepwise increases from 11.8 → 13.6 → 15.5 → >18.7 kcal mol(-1), respectively, while complexation experiments using rapid injection (1)H NMR spectroscopy in DMF-d7 at -55 °C revealed the barriers to complexation for pyrene and coronene to be 6.7 and >8 kcal mol(-1), respectively. The kinetic and thermodynamic data reveal that, in the case of ExCage(6+), while the smaller PAHs form complexes faster than the larger ones, the larger PAHs form stronger complexes than the smaller ones. It is also worthy of note that, as the complexes become stronger in the case of the larger and larger PAHs, the Rebek 55% solution formula for molecular recognition in the liquid state becomes less and less relevant.
环芳烷,特别是那些其中吡啶单元彼此共轭并在由刚性连接体隔开约 7 Å 的平台内面对面连接的环芳烷,由于包括面对面[π···π]堆积和正交[C-H···π]相互作用在内的非共价键相互作用的组合,能够与多环芳烃(PAHs)形成高结合亲和力的包合物。在这里,我们报告了一种模板指导的、催化剂辅助的合成方法,合成了一种具有三面对称性的、扩展的基于吡啶的笼状主体(ExCage(6+)),其中总共六个π-电子缺电子吡啶单元通过三个桥连的对二甲苯连接体以两两方式连接,以三角(1,3,5)方式围绕两个相对且平行的 1,3,5-三(4-吡啶)苯平台排列。通过等温滴定量热法(ITC)在乙腈中测量了八个配合物的结合常数(K(a)),发现范围从萘的 2.82×10(3)到苝的 5.5×10(6) M(-1)。通过动态(1)H NMR 光谱在 DMF-d7 中测量的解络合势垒,对于菲、芘、三亚苯和蒄,分别经历了从 11.8→13.6→15.5→>18.7 kcal mol(-1)的显著逐步增加,而使用快速注射(1)H NMR 光谱在 DMF-d7 中在-55 °C 进行的络合实验表明,芘和蒄的络合势垒分别为 6.7 和>8 kcal mol(-1)。动力学和热力学数据表明,对于 ExCage(6+),虽然较小的 PAHs 比较大的 PAHs 更快地形成配合物,但较大的 PAHs 比较小的 PAHs 形成更强的配合物。值得注意的是,随着较大和较大的 PAHs 的配合物变得更强,Rebek 55%溶液公式对于液体状态下的分子识别变得越来越不相关。