iMinds-Vision Lab, Department of Physics, University of Antwerp, Belgium.
Image Sciences Institute, University Medical Center Utrecht, The Netherlands.
Med Image Anal. 2014 Oct;18(7):953-62. doi: 10.1016/j.media.2014.05.012. Epub 2014 Jun 6.
Ensuring one is using the correct gradient orientations in a diffusion MRI study can be a challenging task. As different scanners, file formats and processing tools use different coordinate frame conventions, in practice, users can end up with improperly oriented gradient orientations. Using such wrongly oriented gradient orientations for subsequent diffusion parameter estimation will invalidate all rotationally variant parameters and fiber tractography results. While large misalignments can be detected by visual inspection, small rotations of the gradient table (e.g. due to angulation of the acquisition plane), are much more difficult to detect. In this work, we propose an automated method to align the coordinate frame of the gradient orientations with that of the corresponding diffusion weighted images, using a metric based on whole brain fiber tractography. By transforming the gradient table and measuring the average fiber trajectory length, we search for the transformation that results in the best global 'connectivity'. To ensure a fast calculation of the metric we included a range of algorithmic optimizations in our tractography routine. To make the optimization routine robust to spurious local maxima, we use a stochastic optimization routine that selects a random set of seed points on each evaluation. Using simulations, we show that our method can recover the correct gradient orientations with high accuracy and precision. In addition, we demonstrate that our technique can successfully recover rotated gradient tables on a wide range of clinically realistic data sets. As such, our method provides a practical and robust solution to an often overlooked pitfall in the processing of diffusion MRI.
确保在扩散 MRI 研究中使用正确的梯度方向是一项具有挑战性的任务。由于不同的扫描仪、文件格式和处理工具使用不同的坐标系约定,实际上,用户最终可能会得到定向不正确的梯度方向。在后续的扩散参数估计中使用这些定向错误的梯度方向将使所有旋转变化参数和纤维追踪结果无效。虽然大的错位可以通过目视检查检测到,但梯度表的小旋转(例如由于采集平面的角度)则更难检测到。在这项工作中,我们提出了一种自动方法,使用基于全脑纤维追踪的度量标准,将梯度方向的坐标系与相应的扩散加权图像的坐标系对齐。通过变换梯度表并测量平均纤维轨迹长度,我们搜索最佳全局“连通性”的变换。为了确保该度量标准的快速计算,我们在纤维追踪例程中包含了一系列算法优化。为了使优化例程对虚假局部最大值具有鲁棒性,我们在每次评估时使用随机优化例程选择一组随机的种子点。通过模拟,我们表明我们的方法可以高精度和高精确度恢复正确的梯度方向。此外,我们证明我们的技术可以成功恢复各种临床现实数据集上的旋转梯度表。因此,我们的方法为扩散 MRI 处理中经常被忽视的陷阱提供了一种实用且稳健的解决方案。