Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY 14853, USA. Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA.
Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA.
Science. 2014 Jun 27;344(6191):1489-92. doi: 10.1126/science.1250140.
Electrons in two-dimensional crystals with a honeycomb lattice structure possess a valley degree of freedom (DOF) in addition to charge and spin. These systems are predicted to exhibit an anomalous Hall effect whose sign depends on the valley index. Here, we report the observation of this so-called valley Hall effect (VHE). Monolayer MoS2 transistors are illuminated with circularly polarized light, which preferentially excites electrons into a specific valley, causing a finite anomalous Hall voltage whose sign is controlled by the helicity of the light. No anomalous Hall effect is observed in bilayer devices, which have crystal inversion symmetry. Our observation of the VHE opens up new possibilities for using the valley DOF as an information carrier in next-generation electronics and optoelectronics.
二维具有蜂窝晶格结构的晶体中的电子除了电荷和自旋外,还具有谷自由度(DOF)。这些系统预计会表现出反常霍尔效应,其符号取决于谷指数。在这里,我们报告了这种所谓的谷霍尔效应(VHE)的观察结果。单层 MoS2 晶体管用圆偏振光照射,该光优先将电子激发到特定的谷中,从而产生有限的反常霍尔电压,其符号由光的螺旋度控制。在具有晶体反转对称性的双层器件中,没有观察到反常霍尔效应。我们对 VHE 的观察为在下一代电子学和光电学中使用谷 DOF 作为信息载体开辟了新的可能性。