Abdul-Hameed H, Messager T, Ayoub G, Zaïri F, Naït-Abdelaziz M, Qu Z, Zaïri F
Université Lille 1 Sciences et Technologies, Laboratoire de Mécanique de Lille (LML), UMR CNRS 8107, F-59650 Villeneuve d'Ascq, France.
Université Lille 1 Sciences et Technologies, Laboratoire de Mécanique de Lille (LML), UMR CNRS 8107, F-59650 Villeneuve d'Ascq, France.
J Mech Behav Biomed Mater. 2014 Sep;37:323-32. doi: 10.1016/j.jmbbm.2014.04.016. Epub 2014 May 9.
Polyethylene-based polymers as biomedical materials can contribute to a wide range of biomechanical applications. Therefore, it is important to identify, analyse, and predict with precision their mechanical behaviour. Polyethylene materials are semi-crystalline systems consisting of both amorphous and crystalline phases interacting in a rather complex manner. When the amorphous phase is in the rubbery state, the mechanical behaviour is strongly dependent on the crystal fraction, therefore leading to essentially thermoplastic or elastomeric responses. In this study, the finite deformation stress-strain response of polyethylene materials is modelled by considering these semi-crystalline polymers as two-phase heterogeneous media in order to provide insight into the role of crystalline and amorphous phases on the macro-behaviour and on the material deformation resistances, i.e. intermolecular and network resistances. A hyperelastic-viscoplastic model is developed in contemplation of representing the overall mechanical response of polyethylene materials under large deformation. An evolutionary optimization procedure based on a genetic algorithm is developed to identify the model parameters at different strain rates. The identification results show good agreement with experimental data, demonstrating the usefulness of the proposed approach: the constitutive model, with only one set of identified parameters, allows reproducing the stress-strain behaviour of polyethylene materials exhibiting a wide range of crystallinities, the crystal content becoming the only variable of the model.
作为生物医学材料的聚乙烯基聚合物可用于广泛的生物力学应用。因此,精确识别、分析和预测它们的力学行为非常重要。聚乙烯材料是半结晶体系,由非晶相和结晶相以相当复杂的方式相互作用组成。当非晶相处于橡胶态时,力学行为强烈依赖于结晶分数,因此会导致基本的热塑性或弹性体响应。在本研究中,通过将这些半结晶聚合物视为两相非均质介质,对聚乙烯材料的有限变形应力-应变响应进行建模,以便深入了解结晶相和非晶相在宏观行为以及材料抗变形能力(即分子间阻力和网络阻力)方面的作用。考虑到表示聚乙烯材料在大变形下的整体力学响应,开发了一种超弹性-粘塑性模型。基于遗传算法开发了一种进化优化程序,以识别不同应变率下的模型参数。识别结果与实验数据显示出良好的一致性,证明了所提出方法的有效性:本构模型仅用一组识别参数,就能再现具有广泛结晶度的聚乙烯材料的应力-应变行为,结晶含量成为该模型的唯一变量。