Suppr超能文献

α亚基调节β3整合素中与配体相关的金属离子结合位点处金属离子的稳定性。

The α-subunit regulates stability of the metal ion at the ligand-associated metal ion-binding site in β3 integrins.

作者信息

Rui Xianliang, Mehrbod Mehrdad, Van Agthoven Johannes F, Anand Saurabh, Xiong Jian-Ping, Mofrad Mohammad R K, Arnaout M Amin

机构信息

Leukocyte Biology and Inflammation Program and Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129.

Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California 94720.

出版信息

J Biol Chem. 2014 Aug 15;289(33):23256-23263. doi: 10.1074/jbc.M114.581470. Epub 2014 Jun 28.

Abstract

The aspartate in the prototypical integrin-binding motif Arg-Gly-Asp binds the integrin βA domain of the β-subunit through a divalent cation at the metal ion-dependent adhesion site (MIDAS). An auxiliary metal ion at a ligand-associated metal ion-binding site (LIMBS) stabilizes the metal ion at MIDAS. LIMBS contacts distinct residues in the α-subunits of the two β3 integrins αIIbβ3 and αVβ3, but a potential role of this interaction on stability of the metal ion at LIMBS in β3 integrins has not been explored. Equilibrium molecular dynamics simulations of fully hydrated β3 integrin ectodomains revealed strikingly different conformations of LIMBS in unliganded αIIbβ3 versus αVβ3, the result of stronger interactions of LIMBS with αV, which reduce stability of the LIMBS metal ion in αVβ3. Replacing the αIIb-LIMBS interface residue Phe(191) in αIIb (equivalent to Trp(179) in αV) with Trp strengthened this interface and destabilized the metal ion at LIMBS in αIIbβ3; a Trp(179) to Phe mutation in αV produced the opposite but weaker effect. Consistently, an F191/W substitution in cellular αIIbβ3 and a W179/F substitution in αVβ3 reduced and increased, respectively, the apparent affinity of Mn(2+) to the integrin. These findings offer an explanation for the variable occupancy of the metal ion at LIMBS in αVβ3 structures in the absence of ligand and provide new insights into the mechanisms of integrin regulation.

摘要

典型整合素结合基序精氨酸 - 甘氨酸 - 天冬氨酸中的天冬氨酸通过金属离子依赖性粘附位点(MIDAS)处的二价阳离子与β亚基的整合素βA结构域结合。配体相关金属离子结合位点(LIMBS)处的辅助金属离子稳定MIDAS处的金属离子。LIMBS与两种β3整合素αIIbβ3和αVβ3的α亚基中的不同残基接触,但尚未探索这种相互作用对β3整合素中LIMBS处金属离子稳定性的潜在作用。对完全水合的β3整合素胞外结构域进行的平衡分子动力学模拟显示,未结合配体的αIIbβ3与αVβ3中LIMBS的构象存在显著差异,这是LIMBS与αV之间更强相互作用的结果,这种相互作用降低了αVβ3中LIMBS金属离子的稳定性。用色氨酸取代αIIb中αIIb-LIMBS界面残基苯丙氨酸(191)(相当于αV中的色氨酸(179))增强了该界面,并使αIIbβ3中LIMBS处的金属离子不稳定;αV中色氨酸(179)突变为苯丙氨酸产生了相反但较弱的效果。一致地,细胞αIIbβ3中的F191 / W取代和αVβ3中的W179 / F取代分别降低和增加了Mn(2+)与整合素的表观亲和力。这些发现解释了在没有配体的情况下αVβ3结构中LIMBS处金属离子的可变占有率,并为整合素调节机制提供了新的见解。

相似文献

1
The α-subunit regulates stability of the metal ion at the ligand-associated metal ion-binding site in β3 integrins.
J Biol Chem. 2014 Aug 15;289(33):23256-23263. doi: 10.1074/jbc.M114.581470. Epub 2014 Jun 28.
2
4
Membrane-proximal {alpha}/{beta} stalk interactions differentially regulate integrin activation.
J Biol Chem. 2005 Jul 1;280(26):24775-83. doi: 10.1074/jbc.M409548200. Epub 2005 Apr 29.
5
The importance of N-glycosylation on β integrin ligand binding and conformational regulation.
Sci Rep. 2017 Jul 5;7(1):4656. doi: 10.1038/s41598-017-04844-w.
7
β-Subunit Binding Is Sufficient for Ligands to Open the Integrin αIIbβ3 Headpiece.
J Biol Chem. 2016 Feb 26;291(9):4537-46. doi: 10.1074/jbc.M115.705624. Epub 2015 Dec 2.
10
Unique transmembrane domain interactions differentially modulate integrin αvβ3 and αIIbβ3 function.
Proc Natl Acad Sci U S A. 2019 Jun 18;116(25):12295-12300. doi: 10.1073/pnas.1904867116. Epub 2019 Jun 3.

引用本文的文献

1
β2 Integrins-Multi-Functional Leukocyte Receptors in Health and Disease.
Int J Mol Sci. 2020 Feb 19;21(4):1402. doi: 10.3390/ijms21041402.
2
Biology and structure of leukocyte β integrins and their role in inflammation.
F1000Res. 2016 Oct 4;5. doi: 10.12688/f1000research.9415.1. eCollection 2016.
3
Structural basis of blocking integrin activation and deactivation for anti-inflammation.
J Biomed Sci. 2015 Jul 8;22(1):51. doi: 10.1186/s12929-015-0159-6.
4
αIIbβ3: structure and function.
J Thromb Haemost. 2015 Jun;13 Suppl 1(Suppl 1):S17-25. doi: 10.1111/jth.12915.

本文引用的文献

2
Structural basis for pure antagonism of integrin αVβ3 by a high-affinity form of fibronectin.
Nat Struct Mol Biol. 2014 Apr;21(4):383-8. doi: 10.1038/nsmb.2797. Epub 2014 Mar 23.
3
On the activation of integrin αIIbβ3: outside-in and inside-out pathways.
Biophys J. 2013 Sep 17;105(6):1304-15. doi: 10.1016/j.bpj.2013.07.055.
4
Localized lipid packing of transmembrane domains impedes integrin clustering.
PLoS Comput Biol. 2013;9(3):e1002948. doi: 10.1371/journal.pcbi.1002948. Epub 2013 Mar 14.
5
α(V)β(3) integrin crystal structures and their functional implications.
Biochemistry. 2012 Nov 6;51(44):8814-28. doi: 10.1021/bi300734n. Epub 2012 Oct 29.
6
Molecular dynamics simulations of forced unbending of integrin α(v)β₃.
PLoS Comput Biol. 2011 Feb;7(2):e1001086. doi: 10.1371/journal.pcbi.1001086. Epub 2011 Feb 17.
7
Clustering of alpha(5)beta(1) integrins determines adhesion strength whereas alpha(v)beta(3) and talin enable mechanotransduction.
Proc Natl Acad Sci U S A. 2009 Sep 22;106(38):16245-50. doi: 10.1073/pnas.0902818106. Epub 2009 Sep 3.
9
The tail of integrins, talin, and kindlins.
Science. 2009 May 15;324(5929):895-9. doi: 10.1126/science.1163865.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验