Suppr超能文献

分离的单个心肌细胞中力-长度关系的负荷依赖性

Load dependency in force-length relations in isolated single cardiomyocytes.

作者信息

Iribe Gentaro, Kaneko Toshiyuki, Yamaguchi Yohei, Naruse Keiji

机构信息

Department of Cardiovascular Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama 700-8558, Japan.

Department of Cardiovascular Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama 700-8558, Japan.

出版信息

Prog Biophys Mol Biol. 2014 Aug;115(2-3):103-14. doi: 10.1016/j.pbiomolbio.2014.06.005. Epub 2014 Jun 26.

Abstract

The previously reported pressure-volume (PV) relationship in frog hearts shows that end-systolic PV relation (ESPVR) is load dependent, whereas ESPVR in canine hearts is load independent. To study intrinsic cardiac mechanics in detail, it is desirable to study mechanics in a single isolated cardiomyocyte that is free from interstitial connective tissue. Previous single cell mechanics studies used a pair of carbon fibers (CF) attached to the upper surface of opposite cell ends to stretch cells. These studies showed that end-systolic force-length (FL) relation (ESFLR) is load independent. However, the range of applicable mechanical load using the conventional technique is limited because of weak cell-CF attachment. Therefore, the behavior of ESFLR in single cells under physiologically possible conditions of greater load is not yet well known. To cover wider loading range, we contrived a new method to hold cell-ends more firmly using two pairs of CF attached to both upper and bottom surfaces of cells. The new method allowed stretching cells to 2.2 μm or more in end-diastolic sarcomere length. ESFLR virtually behaves in a load independent manner only with end-diastolic sarcomere length less than 1.95 μm. It exhibited clear load dependency with higher preload, especially with low afterload conditions. Instantaneous cellular elastance curves showed that decreasing afterload enhanced relaxation and slowed time to peak elastance, as previously reported. A simulation study of a mathematical model with detailed description of thin filament activation suggested that velocity dependent thin filament inactivation is crucial for the observed load dependent behaviors and previously reported afterload dependent change in Ca(2+) transient shape.

摘要

先前报道的蛙心压力-容积(PV)关系表明,收缩末期PV关系(ESPVR)依赖于负荷,而犬心的ESPVR则与负荷无关。为了详细研究心脏的内在力学,研究单个分离的、无间质结缔组织的心肌细胞的力学是很有必要的。先前的单细胞力学研究使用一对碳纤维(CF)附着在细胞相对两端的上表面来拉伸细胞。这些研究表明,收缩末期力-长度(FL)关系(ESFLR)与负荷无关。然而,由于细胞与CF的附着较弱,使用传统技术适用的机械负荷范围有限。因此,在生理上可能的更大负荷条件下单细胞中ESFLR的行为尚不为人所知。为了覆盖更宽的负荷范围,我们设计了一种新方法,使用两对分别附着在细胞上表面和下表面的CF更牢固地固定细胞两端。这种新方法能将细胞舒张末期肌节长度拉伸至2.2μm或更长。ESFLR实际上仅在舒张末期肌节长度小于1.95μm时才表现出与负荷无关的行为。在较高前负荷下,尤其是在低后负荷条件下,它表现出明显的负荷依赖性。瞬时细胞弹性曲线表明,如先前报道的那样,降低后负荷可增强舒张并延长达到峰值弹性的时间。一项对细丝激活进行详细描述的数学模型的模拟研究表明,速度依赖性细丝失活对于观察到的负荷依赖性行为以及先前报道的后负荷依赖性Ca(2+)瞬变形状变化至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验