Suppr超能文献

一种广谱抗生物膜肽可增强抗生素对细菌生物膜的作用。

A broad-spectrum antibiofilm peptide enhances antibiotic action against bacterial biofilms.

作者信息

Reffuveille Fany, de la Fuente-Núñez César, Mansour Sarah, Hancock Robert E W

机构信息

Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada.

Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada

出版信息

Antimicrob Agents Chemother. 2014 Sep;58(9):5363-71. doi: 10.1128/AAC.03163-14. Epub 2014 Jun 30.

Abstract

Biofilm-related infections account for at least 65% of all human infections, but there are no available antimicrobials that specifically target biofilms. Their elimination by available treatments is inefficient since biofilm cells are between 10- and 1,000-fold more resistant to conventional antibiotics than planktonic cells. Here we describe the synergistic interactions, with different classes of antibiotics, of a recently characterized antibiofilm peptide, 1018, to potently prevent and eradicate bacterial biofilms formed by multidrug-resistant ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens. Combinations of peptide 1018 and the antibiotic ceftazidime, ciprofloxacin, imipenem, or tobramycin were synergistic in 50% of assessments and decreased by 2- to 64-fold the concentration of antibiotic required to treat biofilms formed by Pseudomonas aeruginosa, Escherichia coli, Acinetobacter baumannii, Klebsiella pneumoniae, Salmonella enterica, and methicillin-resistant Staphylococcus aureus. Furthermore, in flow cell biofilm studies, combinations of low, subinhibitory levels of the peptide (0.8 μg/ml) and ciprofloxacin (40 ng/ml) decreased dispersal and triggered cell death in mature P. aeruginosa biofilms. In addition, short-term treatments with the peptide in combination with ciprofloxacin prevented biofilm formation and reduced P. aeruginosa PA14 preexisting biofilms. PCR studies indicated that the peptide suppressed the expression of various antibiotic targets in biofilm cells. Thus, treatment with the peptide represents a novel strategy to potentiate antibiotic activity against biofilms formed by multidrug-resistant pathogens.

摘要

生物膜相关感染至少占所有人类感染的65%,但目前尚无专门针对生物膜的抗菌药物。现有的治疗方法难以有效清除生物膜,因为生物膜中的细胞对传统抗生素的耐药性比浮游细胞高10到1000倍。在此,我们描述了一种最近鉴定出的抗生物膜肽1018与不同类别的抗生素之间的协同相互作用,该肽能有效预防和根除由多重耐药的ESKAPE(粪肠球菌、金黄色葡萄球菌、肺炎克雷伯菌、鲍曼不动杆菌、铜绿假单胞菌和肠杆菌属)病原体形成的细菌生物膜。在50%的评估中,肽1018与抗生素头孢他啶(ceftazidime)、环丙沙星(ciprofloxacin)、亚胺培南(imipenem)或妥布霉素(tobramycin)的组合具有协同作用,并且将治疗铜绿假单胞菌、大肠杆菌、鲍曼不动杆菌、肺炎克雷伯菌、肠炎沙门氏菌和耐甲氧西林金黄色葡萄球菌形成的生物膜所需的抗生素浓度降低了2至64倍。此外,在流动细胞生物膜研究中,低浓度、亚抑制水平的肽(0.8μg/ml)和环丙沙星(40ng/ml)的组合减少了成熟铜绿假单胞菌生物膜的分散,并引发细胞死亡。此外,肽与环丙沙星联合进行短期治疗可预防生物膜形成,并减少铜绿假单胞菌PA14已形成的生物膜。PCR研究表明,该肽抑制了生物膜细胞中各种抗生素靶点的表达。因此,用该肽进行治疗代表了一种增强针对多重耐药病原体形成的生物膜的抗生素活性的新策略。

相似文献

1
A broad-spectrum antibiofilm peptide enhances antibiotic action against bacterial biofilms.
Antimicrob Agents Chemother. 2014 Sep;58(9):5363-71. doi: 10.1128/AAC.03163-14. Epub 2014 Jun 30.
2
Broad-spectrum anti-biofilm peptide that targets a cellular stress response.
PLoS Pathog. 2014 May 22;10(5):e1004152. doi: 10.1371/journal.ppat.1004152. eCollection 2014 May.
3
Antibiofilm Peptides: Potential as Broad-Spectrum Agents.
J Bacteriol. 2016 Sep 9;198(19):2572-8. doi: 10.1128/JB.00017-16. Print 2016 Oct 1.
6
-derived peptides disrupt quorum sensing and biofilm assembly in multidrug-resistant .
mSystems. 2024 Aug 20;9(8):e0071224. doi: 10.1128/msystems.00712-24. Epub 2024 Jul 11.
8
Antipathogenic Efficacy of Biogenic Silver Nanoparticles and Antibiofilm Activities Against Multi-drug-Resistant ESKAPE Pathogens.
Appl Biochem Biotechnol. 2024 Apr;196(4):2031-2052. doi: 10.1007/s12010-023-04630-7. Epub 2023 Jul 18.
9
Antibacterial mechanism of Pseudomonas aeruginosa UKMP14T rhamnolipids against multidrug resistant Acinetobacter baumannii.
Microb Pathog. 2024 Aug;193:106743. doi: 10.1016/j.micpath.2024.106743. Epub 2024 Jun 13.
10
Antibiofilm peptides increase the susceptibility of carbapenemase-producing Klebsiella pneumoniae clinical isolates to β-lactam antibiotics.
Antimicrob Agents Chemother. 2015 Jul;59(7):3906-12. doi: 10.1128/AAC.00092-15. Epub 2015 Apr 20.

引用本文的文献

2
Deep learning reveals antibiotics in the archaeal proteome.
Nat Microbiol. 2025 Aug 12. doi: 10.1038/s41564-025-02061-0.
3
Biofilm and surface-motility profiles under polymyxin B stress in multidrug-resistant KAPE pathogens isolated from Ghanaian hospital ICUs.
Exp Biol Med (Maywood). 2025 Jun 6;250:10350. doi: 10.3389/ebm.2025.10350. eCollection 2025.
6
D-enantiomeric antibiofilm peptides effective against anaerobic biofilm.
Microbiol Spectr. 2025 Mar 25;13(5):e0252324. doi: 10.1128/spectrum.02523-24.
7
Controlling Oral Polymicrobial Biofilm Using Usnic Acid on the Surface of Titanium in the Artificial Saliva Media.
Antibiotics (Basel). 2025 Jan 22;14(2):115. doi: 10.3390/antibiotics14020115.
8
Septic arthritis - symptoms, diagnosis and new therapy.
Eur J Clin Microbiol Infect Dis. 2025 May;44(5):1019-1029. doi: 10.1007/s10096-025-05066-z. Epub 2025 Feb 18.
9
Anti-Biofilm Agents to Overcome Antibiotic Resistance.
Pharmaceuticals (Basel). 2025 Jan 13;18(1):92. doi: 10.3390/ph18010092.
10
Machine learning for antimicrobial peptide identification and design.
Nat Rev Bioeng. 2024 May;2(5):392-407. doi: 10.1038/s44222-024-00152-x. Epub 2024 Feb 26.

本文引用的文献

1
Broad-spectrum anti-biofilm peptide that targets a cellular stress response.
PLoS Pathog. 2014 May 22;10(5):e1004152. doi: 10.1371/journal.ppat.1004152. eCollection 2014 May.
2
Applying insights from biofilm biology to drug development - can a new approach be developed?
Nat Rev Drug Discov. 2013 Oct;12(10):791-808. doi: 10.1038/nrd4000.
3
Bacterial biofilm development as a multicellular adaptation: antibiotic resistance and new therapeutic strategies.
Curr Opin Microbiol. 2013 Oct;16(5):580-9. doi: 10.1016/j.mib.2013.06.013. Epub 2013 Jul 20.
4
Effect of nitroxides on swarming motility and biofilm formation, multicellular behaviors in Pseudomonas aeruginosa.
Antimicrob Agents Chemother. 2013 Oct;57(10):4877-81. doi: 10.1128/AAC.01381-13. Epub 2013 Jul 22.
5
Biofilm infections, their resilience to therapy and innovative treatment strategies.
J Intern Med. 2012 Dec;272(6):541-61. doi: 10.1111/joim.12004. Epub 2012 Oct 29.
6
Inhibition of bacterial biofilm formation and swarming motility by a small synthetic cationic peptide.
Antimicrob Agents Chemother. 2012 May;56(5):2696-704. doi: 10.1128/AAC.00064-12. Epub 2012 Feb 21.
7
Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria.
Science. 2011 Nov 18;334(6058):982-6. doi: 10.1126/science.1211037.
8
The clinical impact of bacterial biofilms.
Int J Oral Sci. 2011 Apr;3(2):55-65. doi: 10.4248/IJOS11026.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验