Suppr超能文献

AKT信号通路基因可将胶质母细胞瘤分为5个预后亚组。

AKT pathway genes define 5 prognostic subgroups in glioblastoma.

作者信息

Joy Anna, Ramesh Archana, Smirnov Ivan, Reiser Mark, Misra Anjan, Shapiro William R, Mills Gordon B, Kim Seungchan, Feuerstein Burt G

机构信息

Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, United States of America.

University of Washington, Tacoma, Washington, United States of America.

出版信息

PLoS One. 2014 Jul 1;9(7):e100827. doi: 10.1371/journal.pone.0100827. eCollection 2014.

Abstract

Activity of GFR/PI3K/AKT pathway inhibitors in glioblastoma clinical trials has not been robust. We hypothesized variations in the pathway between tumors contribute to poor response. We clustered GBM based on AKT pathway genes and discovered new subtypes then characterized their clinical and molecular features. There are at least 5 GBM AKT subtypes having distinct DNA copy number alterations, enrichment in oncogenes and tumor suppressor genes and patterns of expression for PI3K/AKT/mTOR signaling components. Gene Ontology terms indicate a different cell of origin or dominant phenotype for each subgroup. Evidence suggests one subtype is very sensitive to BCNU or CCNU (median survival 5.8 vs. 1.5 years; BCNU/CCNU vs other treatments; respectively). AKT subtyping advances previous approaches by revealing additional subgroups with unique clinical and molecular features. Evidence indicates it is a predictive marker for response to BCNU or CCNU and PI3K/AKT/mTOR pathway inhibitors. We anticipate Akt subtyping may help stratify patients for clinical trials and augment discovery of class-specific therapeutic targets.

摘要

在胶质母细胞瘤的临床试验中,GFR/PI3K/AKT通路抑制剂的活性并不显著。我们推测肿瘤之间该通路的差异导致了疗效不佳。我们基于AKT通路基因对胶质母细胞瘤进行聚类,发现了新的亚型,然后对其临床和分子特征进行了表征。至少有5种胶质母细胞瘤AKT亚型,它们具有不同的DNA拷贝数改变、癌基因和肿瘤抑制基因的富集以及PI3K/AKT/mTOR信号成分的表达模式。基因本体术语表明每个亚组有不同的细胞起源或显性表型。有证据表明,一种亚型对卡氮芥或洛莫司汀非常敏感(中位生存期分别为5.8年和1.5年;卡氮芥/洛莫司汀与其他治疗方法相比)。AKT亚型分类通过揭示具有独特临床和分子特征的额外亚组,改进了先前的方法。有证据表明它是对卡氮芥或洛莫司汀以及PI3K/AKT/mTOR通路抑制剂反应的预测标志物。我们预计Akt亚型分类可能有助于对患者进行临床试验分层,并增加对特定类别的治疗靶点的发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b0b/4077731/ae4e2be2f538/pone.0100827.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验