Suppr超能文献

黄斑中心凹转录组的生成。

Generation of a foveomacular transcriptome.

作者信息

Ziesel Alison, Bernstein Steven, Wong Paul W

机构信息

Department of Ophthalmology, Emory University, Atlanta GA.

Department of Opthalmology and Visual Sciences, University of Maryland, Baltimore MD.

出版信息

Mol Vis. 2014 Jul 1;20:947-54. eCollection 2014.

Abstract

PURPOSE

Organizing molecular biologic data is a growing challenge since the rate of data accumulation is steadily increasing. Information relevant to a particular biologic query can be difficult to extract from the comprehensive databases currently available. We present a data collection and organization model designed to ameliorate these problems and applied it to generate an expressed sequence tag (EST)-based foveomacular transcriptome.

METHODS

Using Perl, MySQL, EST libraries, screening, and human foveomacular gene expression as a model system, we generated a foveomacular transcriptome database enriched for molecularly relevant data.

RESULTS

Using foveomacula as a gene expression model tissue, we identified and organized 6,056 genes expressed in that tissue. Of those identified genes, 3,480 had not been previously described as expressed in the foveomacula. Internal experimental controls as well as comparison of our data set to published data sets suggest we do not yet have a complete description of the foveomacula transcriptome.

CONCLUSIONS

We present an organizational method designed to amplify the utility of data pertinent to a specific research interest. Our method is generic enough to be applicable to a variety of conditions yet focused enough to allow for specialized study.

摘要

目的

由于数据积累速度不断加快,整理分子生物学数据面临着日益严峻的挑战。从当前可用的综合数据库中提取与特定生物学问题相关的信息可能很困难。我们提出了一种数据收集和整理模型,旨在改善这些问题,并将其应用于生成基于表达序列标签(EST)的黄斑中心凹转录组。

方法

以Perl、MySQL、EST文库、筛选以及人类黄斑中心凹基因表达作为模型系统,我们生成了一个富含分子相关数据的黄斑中心凹转录组数据库。

结果

以黄斑中心凹作为基因表达模型组织,我们鉴定并整理了在该组织中表达的6056个基因。在这些鉴定出的基因中,有3480个此前未被描述为在黄斑中心凹中表达。内部实验对照以及将我们的数据集与已发表的数据集进行比较表明,我们尚未对黄斑中心凹转录组有完整的描述。

结论

我们提出了一种组织方法,旨在增强与特定研究兴趣相关的数据的实用性。我们的方法具有足够的通用性,可适用于多种情况,但又足够聚焦,能够进行专门研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/386e/4077849/04e5b7f068b0/mv-v20-947-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验