Suppr超能文献

TrkB受体信号传导受损是亨廷顿舞蹈病中皮质纹状体功能障碍的基础。

Impaired TrkB receptor signaling underlies corticostriatal dysfunction in Huntington's disease.

作者信息

Plotkin Joshua L, Day Michelle, Peterson Jayms D, Xie Zhong, Kress Geraldine J, Rafalovich Igor, Kondapalli Jyothisri, Gertler Tracy S, Flajolet Marc, Greengard Paul, Stavarache Mihaela, Kaplitt Michael G, Rosinski Jim, Chan C Savio, Surmeier D James

机构信息

Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.

Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10065, USA.

出版信息

Neuron. 2014 Jul 2;83(1):178-88. doi: 10.1016/j.neuron.2014.05.032.

Abstract

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder. The debilitating choreic movements that plague HD patients have been attributed to striatal degeneration induced by the loss of cortically supplied brain-derived neurotrophic factor (BDNF). Here, we show that in mouse models of early symptomatic HD, BDNF delivery to the striatum and its activation of tyrosine-related kinase B (TrkB) receptors were normal. However, in striatal neurons responsible for movement suppression, TrkB receptors failed to properly engage postsynaptic signaling mechanisms controlling the induction of potentiation at corticostriatal synapses. Plasticity was rescued by inhibiting p75 neurotrophin receptor (p75NTR) signaling or its downstream target phosphatase-and-tensin-homolog-deleted-on-chromosome-10 (PTEN). Thus, corticostriatal synaptic dysfunction early in HD is attributable to a correctable defect in the response to BDNF, not its delivery.

摘要

亨廷顿舞蹈症(HD)是一种常染色体显性神经退行性疾病。困扰HD患者的使人衰弱的舞蹈样动作被认为是由于皮质提供的脑源性神经营养因子(BDNF)缺失导致的纹状体变性所致。在此,我们表明,在早期有症状的HD小鼠模型中,BDNF向纹状体的传递及其对酪氨酸相关激酶B(TrkB)受体的激活是正常的。然而,在负责运动抑制的纹状体神经元中,TrkB受体未能正确参与控制皮质纹状体突触处增强诱导的突触后信号传导机制。通过抑制p75神经营养因子受体(p75NTR)信号传导或其下游靶点10号染色体缺失的磷酸酶和张力蛋白同源物(PTEN),可塑性得以恢复。因此,HD早期的皮质纹状体突触功能障碍可归因于对BDNF反应中可纠正的缺陷,而非其传递问题。

相似文献

1
Impaired TrkB receptor signaling underlies corticostriatal dysfunction in Huntington's disease.
Neuron. 2014 Jul 2;83(1):178-88. doi: 10.1016/j.neuron.2014.05.032.
3
It's not necessarily all about the delivery in Huntington's disease.
Neuron. 2014 Jul 2;83(1):6-8. doi: 10.1016/j.neuron.2014.06.009.
4
Selective reduction of striatal mature BDNF without induction of proBDNF in the zQ175 mouse model of Huntington's disease.
Neurobiol Dis. 2015 Oct;82:466-477. doi: 10.1016/j.nbd.2015.08.008. Epub 2015 Aug 15.
6
The p75 neurotrophin receptor augments survival signaling in the striatum of pre-symptomatic Q175(WT/HD) mice.
Neuroscience. 2016 Jun 2;324:297-306. doi: 10.1016/j.neuroscience.2016.02.069. Epub 2016 Mar 3.
7
Mutant Huntingtin alters retrograde transport of TrkB receptors in striatal dendrites.
J Neurosci. 2013 Apr 10;33(15):6298-309. doi: 10.1523/JNEUROSCI.2033-12.2013.
10
Impaired striatal function in Huntington's disease is due to aberrant p75NTR signaling.
Rare Dis. 2014 Nov 3;2(1):e968482. doi: 10.4161/2167549X.2014.968482. eCollection 2014.

引用本文的文献

2
3
Brain-Derived Neurotrophic Factor (BDNF) in Huntington's Disease: Neurobiology and Therapeutic Potential.
Curr Neuropharmacol. 2025;23(4):384-403. doi: 10.2174/1570159X22666240530105516.
5
Restoring Compromised Cl in D2 Neurons of a Huntington's Disease Mouse Model Rescues Motor Disability.
J Neurosci. 2024 Dec 11;44(50):e0215242024. doi: 10.1523/JNEUROSCI.0215-24.2024.
6
Therapeutic approaches targeting aging and cellular senescence in Huntington's disease.
CNS Neurosci Ther. 2024 Oct;30(10):e70053. doi: 10.1111/cns.70053.
7
Targeting TrkB-PSD-95 coupling to mitigate neurological disorders.
Neural Regen Res. 2025 Mar 1;20(3):715-724. doi: 10.4103/NRR.NRR-D-23-02000. Epub 2024 May 13.
8
BDNF and TRiC-inspired reagent rescue cortical synaptic deficits in a mouse model of Huntington's disease.
Neurobiol Dis. 2024 Jun 1;195:106502. doi: 10.1016/j.nbd.2024.106502. Epub 2024 Apr 10.
10
Age- and region-dependent cortical excitability in the zQ175 Huntington disease mouse model.
Hum Mol Genet. 2024 Feb 18;33(5):387-399. doi: 10.1093/hmg/ddad191.

本文引用的文献

3
The role of Rhes, Ras homolog enriched in striatum, in neurodegenerative processes.
Exp Cell Res. 2013 Sep 10;319(15):2310-5. doi: 10.1016/j.yexcr.2013.03.033. Epub 2013 Apr 10.
4
Effects of the Ras homolog Rhes on Akt/protein kinase B and glycogen synthase kinase 3 phosphorylation in striatum.
Neuroscience. 2013 Apr 16;236:21-30. doi: 10.1016/j.neuroscience.2012.12.062. Epub 2013 Feb 1.
6
Comprehensive behavioral and molecular characterization of a new knock-in mouse model of Huntington's disease: zQ175.
PLoS One. 2012;7(12):e49838. doi: 10.1371/journal.pone.0049838. Epub 2012 Dec 20.
7
Strain-specific regulation of striatal phenotype in Drd2-eGFP BAC transgenic mice.
J Neurosci. 2012 Jul 4;32(27):9124-32. doi: 10.1523/JNEUROSCI.0229-12.2012.
8
Recurrent network activity drives striatal synaptogenesis.
Nature. 2012 May 13;485(7400):646-50. doi: 10.1038/nature11052.
9
OSA: a fast and accurate alignment tool for RNA-Seq.
Bioinformatics. 2012 Jul 15;28(14):1933-4. doi: 10.1093/bioinformatics/bts294. Epub 2012 May 15.
10
The RhoA-ROCK-PTEN pathway as a molecular switch for anchorage dependent cell behavior.
Biomaterials. 2012 Apr;33(10):2902-15. doi: 10.1016/j.biomaterials.2011.12.051. Epub 2012 Jan 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验