文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

离子液体的毒性:数据库和定量结构-活性关系方法预测。

Toxicity of ionic liquids: database and prediction via quantitative structure-activity relationship method.

机构信息

Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China; School of Material and Chemical Engineering, Zhengzhou University of Light Industry, 450001 Zhengzhou, China.

School of Material and Chemical Engineering, Zhengzhou University of Light Industry, 450001 Zhengzhou, China.

出版信息

J Hazard Mater. 2014 Aug 15;278:320-9. doi: 10.1016/j.jhazmat.2014.06.018. Epub 2014 Jun 20.


DOI:10.1016/j.jhazmat.2014.06.018
PMID:24996150
Abstract

A comprehensive database on toxicity of ionic liquids (ILs) is established. The database includes over 4000 pieces of data. Based on the database, the relationship between IL's structure and its toxicity has been analyzed qualitatively. Furthermore, Quantitative Structure-Activity relationships (QSAR) model is conducted to predict the toxicities (EC50 values) of various ILs toward the Leukemia rat cell line IPC-81. Four parameters selected by the heuristic method (HM) are used to perform the studies of multiple linear regression (MLR) and support vector machine (SVM). The squared correlation coefficient (R(2)) and the root mean square error (RMSE) of training sets by two QSAR models are 0.918 and 0.959, 0.258 and 0.179, respectively. The prediction R(2) and RMSE of QSAR test sets by MLR model are 0.892 and 0.329, by SVM model are 0.958 and 0.234, respectively. The nonlinear model developed by SVM algorithm is much outperformed MLR, which indicates that SVM model is more reliable in the prediction of toxicity of ILs. This study shows that increasing the relative number of O atoms of molecules leads to decrease in the toxicity of ILs.

摘要

建立了一个关于离子液体(ILs)毒性的综合数据库。该数据库包含超过 4000 条数据。基于该数据库,分析了 IL 结构与其毒性之间的定性关系。此外,还进行了定量构效关系(QSAR)模型,以预测各种 IL 对白血病大鼠细胞系 IPC-81 的毒性(EC50 值)。采用启发式方法(HM)选择的四个参数用于进行多元线性回归(MLR)和支持向量机(SVM)的研究。两个 QSAR 模型的训练集的平方相关系数(R(2))和均方根误差(RMSE)分别为 0.918 和 0.959、0.258 和 0.179。MLR 模型的 QSAR 测试集的预测 R(2)和 RMSE 分别为 0.892 和 0.329,SVM 模型的预测 R(2)和 RMSE 分别为 0.958 和 0.234。SVM 算法开发的非线性模型明显优于 MLR,这表明 SVM 模型在 IL 毒性预测方面更为可靠。本研究表明,分子中 O 原子的相对数量增加会导致 ILs 毒性降低。

相似文献

[1]
Toxicity of ionic liquids: database and prediction via quantitative structure-activity relationship method.

J Hazard Mater. 2014-6-20

[2]
Using machine learning and quantum chemistry descriptors to predict the toxicity of ionic liquids.

J Hazard Mater. 2018-3-15

[3]
Topological study on the toxicity of ionic liquids on Vibrio fischeri by the quantitative structure-activity relationship method.

J Hazard Mater. 2015-1-7

[4]
Predicting the Toxicity of Ionic Liquids toward Acetylcholinesterase Enzymes Using Novel QSAR Models.

Int J Mol Sci. 2019-5-2

[5]
Cytotoxicity estimation of ionic liquids based on their effective structural features.

Chemosphere. 2011-5-5

[6]
Quantitative structure-activity relationship for toxicity of ionic liquids to Daphnia magna: aromaticity vs. lipophilicity.

Chemosphere. 2014-5-4

[7]
Development of a novel mathematical model using a group contribution method for prediction of ionic liquid toxicities.

Chemosphere. 2011-7-26

[8]
A structure-activity relationship study of the toxicity of ionic liquids using an adapted Ferreira-Kiralj hydrophobicity parameter.

Phys Chem Chem Phys. 2015-2-14

[9]
Application of support vector machine (SVM) for prediction toxic activity of different data sets.

Toxicology. 2006-1-16

[10]
Nonlinear QSAR modeling for predicting cytotoxicity of ionic liquids in leukemia rat cell line: an aid to green chemicals designing.

Environ Sci Pollut Res Int. 2015-4-28

引用本文的文献

[1]
A comprehensive dataset on cytotoxicity of ionic liquids.

Sci Data. 2024-12-18

[2]
From Environmental Toxicants to Antibacterial Agents: BPA Analogues Selectively Inhibit the Growth of Gram-Positive Bacteria by Disturbing Biosynthesis of the Cell Wall.

Environ Health (Wash). 2023-9-7

[3]
Molecule(s) of Interest: I. Ionic Liquids-Gateway to Newer Nanotechnology Applications: Advanced Nanobiotechnical Uses', Current Status, Emerging Trends, Challenges, and Prospects.

Int J Mol Sci. 2022-11-18

[4]
Machine Learning for Evaluating the Cytotoxicity of Mixtures of Nano-TiO and Heavy Metals: QSAR Model Apply Random Forest Algorithm after Clustering Analysis.

Molecules. 2022-9-19

[5]
Deep Probabilistic Learning Model for Prediction of Ionic Liquids Toxicity.

Int J Mol Sci. 2022-5-9

[6]
Predicting the Toxicity of Ionic Liquids toward Acetylcholinesterase Enzymes Using Novel QSAR Models.

Int J Mol Sci. 2019-5-2

[7]
A QSPR approach to the ecotoxicity of ionic liquids () using VolSurf principal properties.

Toxicol Res (Camb). 2016-4-21

[8]
Recent Advances in Applications of Ionic Liquids in Miniaturized Microextraction Techniques.

Molecules. 2018-6-13

[9]
Random Forest Approach to QSPR Study of Fluorescence Properties Combining Quantum Chemical Descriptors and Solvent Conditions.

J Fluoresc. 2018-3

[10]
Nonlinear QSAR modeling for predicting cytotoxicity of ionic liquids in leukemia rat cell line: an aid to green chemicals designing.

Environ Sci Pollut Res Int. 2015-4-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索