Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China; School of Material and Chemical Engineering, Zhengzhou University of Light Industry, 450001 Zhengzhou, China.
School of Material and Chemical Engineering, Zhengzhou University of Light Industry, 450001 Zhengzhou, China.
J Hazard Mater. 2014 Aug 15;278:320-9. doi: 10.1016/j.jhazmat.2014.06.018. Epub 2014 Jun 20.
A comprehensive database on toxicity of ionic liquids (ILs) is established. The database includes over 4000 pieces of data. Based on the database, the relationship between IL's structure and its toxicity has been analyzed qualitatively. Furthermore, Quantitative Structure-Activity relationships (QSAR) model is conducted to predict the toxicities (EC50 values) of various ILs toward the Leukemia rat cell line IPC-81. Four parameters selected by the heuristic method (HM) are used to perform the studies of multiple linear regression (MLR) and support vector machine (SVM). The squared correlation coefficient (R(2)) and the root mean square error (RMSE) of training sets by two QSAR models are 0.918 and 0.959, 0.258 and 0.179, respectively. The prediction R(2) and RMSE of QSAR test sets by MLR model are 0.892 and 0.329, by SVM model are 0.958 and 0.234, respectively. The nonlinear model developed by SVM algorithm is much outperformed MLR, which indicates that SVM model is more reliable in the prediction of toxicity of ILs. This study shows that increasing the relative number of O atoms of molecules leads to decrease in the toxicity of ILs.
建立了一个关于离子液体(ILs)毒性的综合数据库。该数据库包含超过 4000 条数据。基于该数据库,分析了 IL 结构与其毒性之间的定性关系。此外,还进行了定量构效关系(QSAR)模型,以预测各种 IL 对白血病大鼠细胞系 IPC-81 的毒性(EC50 值)。采用启发式方法(HM)选择的四个参数用于进行多元线性回归(MLR)和支持向量机(SVM)的研究。两个 QSAR 模型的训练集的平方相关系数(R(2))和均方根误差(RMSE)分别为 0.918 和 0.959、0.258 和 0.179。MLR 模型的 QSAR 测试集的预测 R(2)和 RMSE 分别为 0.892 和 0.329,SVM 模型的预测 R(2)和 RMSE 分别为 0.958 和 0.234。SVM 算法开发的非线性模型明显优于 MLR,这表明 SVM 模型在 IL 毒性预测方面更为可靠。本研究表明,分子中 O 原子的相对数量增加会导致 ILs 毒性降低。
J Hazard Mater. 2018-3-15
Environ Sci Pollut Res Int. 2015-4-28
Sci Data. 2024-12-18
Int J Mol Sci. 2022-5-9
Toxicol Res (Camb). 2016-4-21
Environ Sci Pollut Res Int. 2015-4-28