Wu Xiaofei, Yuan Bin, Bao Zongbi, Deng Shuguang
Chemical & Materials Engineering Department, New Mexico State University, Las Cruces, NM 88003, USA.
Chemical and Biological Engineering Department, Zhejiang University, Hangzhou 310027, China.
J Colloid Interface Sci. 2014 Sep 15;430:78-84. doi: 10.1016/j.jcis.2014.05.021. Epub 2014 May 23.
An ultramicroporous copper metal-organic framework (Cu-MOF), Cu(hfipbb)(H2hfipbb)0.5 [H2hfipbb=4,4'-(hexafluoro-isopropylidene) bis(benzoic acid)] was successfully synthesized by a microwave-assisted method (1) with a shorter reaction time and higher MOFs yield. The obtained Cu-MOF sample was characterized with scanning electron microscopy for crystal structure, powder X-ray diffraction for phase structure, and carbon dioxide adsorption at 273 K for pore textural properties. Single-component adsorption (adsorption equilibrium and kinetics) of CO2, CH4, and N2 on 1 was measured using a Micromeritics ASAP 2020 adsorption porosimeter at 278, 298 and 318 K, and pressures up to 1 bar. Isosteric heats of adsorption, Henry's constants, and diffusion time constants were calculated and carefully analyzed. Adsorption equilibrium selectivity (α), adsorbent selection parameter for pressure swing adsorption processes (S), kinetic selectivity and combined separation selectivity (β) for CO2/CH4, CO2/N2 and CH4/N2 binary mixtures were estimated based on the single-component adsorption data. The relative high values of the adsorption selectivities suggest that Cu-MOF is a promising adsorbent for separating CO2/CH4, CO2/N2 and CH4/N2 gas pairs.
通过微波辅助法成功合成了一种超微孔铜金属有机框架材料(Cu-MOF),即Cu(hfipbb)(H2hfipbb)0.5 [H2hfipbb = 4,4'-(六氟异亚丙基)双(苯甲酸)],该方法反应时间更短且金属有机框架材料产率更高。利用扫描电子显微镜对所得Cu-MOF样品的晶体结构进行表征,用粉末X射线衍射分析其相结构,并在273 K下测定二氧化碳吸附以研究其孔结构性质。使用麦克默瑞提克ASAP 2020吸附孔隙率测定仪在278、298和318 K以及最高1 bar的压力下测量了CO2、CH4和N2在1上的单组分吸附(吸附平衡和动力学)。计算并仔细分析了等量吸附热、亨利常数和扩散时间常数。基于单组分吸附数据估算了CO2/CH4、CO2/N2和CH4/N2二元混合物的吸附平衡选择性(α)、变压吸附过程的吸附剂选择参数(S)、动力学选择性和组合分离选择性(β)。吸附选择性的相对较高值表明Cu-MOF是分离CO2/CH4、CO2/N2和CH4/N2气体对的一种有前景的吸附剂。