Suppr超能文献

NAVIS——一种用于大面积实时应用的采用激光扫描匹配技术的无人地面车辆室内定位系统。

NAVIS-An UGV indoor positioning system using laser scan matching for large-area real-time applications.

作者信息

Tang Jian, Chen Yuwei, Jaakkola Anttoni, Liu Jinbing, Hyyppä Juha, Hyyppä Hannu

机构信息

GNSS Research Center, Wuhan University, 129 Luoyu Road, Wuhan 430079, China.

Department of Remote Sensing and Photogrammetry, Finnish Geodetic Institute, Kirkkonummi FI-02431, Finland.

出版信息

Sensors (Basel). 2014 Jul 4;14(7):11805-24. doi: 10.3390/s140711805.

Abstract

Laser scan matching with grid-based maps is a promising tool for real-time indoor positioning of mobile Unmanned Ground Vehicles (UGVs). While there are critical implementation problems, such as the ability to estimate the position by sensing the unknown indoor environment with sufficient accuracy and low enough latency for stable vehicle control, further development work is necessary. Unfortunately, most of the existing methods employ heuristics for quick positioning in which numerous accumulated errors easily lead to loss of positioning accuracy. This severely restricts its applications in large areas and over lengthy periods of time. This paper introduces an efficient real-time mobile UGV indoor positioning system for large-area applications using laser scan matching with an improved probabilistically-motivated Maximum Likelihood Estimation (IMLE) algorithm, which is based on a multi-resolution patch-divided grid likelihood map. Compared with traditional methods, the improvements embodied in IMLE include: (a) Iterative Closed Point (ICP) preprocessing, which adaptively decreases the search scope; (b) a totally brute search matching method on multi-resolution map layers, based on the likelihood value between current laser scan and the grid map within refined search scope, adopted to obtain the global optimum position at each scan matching; and (c) a patch-divided likelihood map supporting a large indoor area. A UGV platform called NAVIS was designed, manufactured, and tested based on a low-cost robot integrating a LiDAR and an odometer sensor to verify the IMLE algorithm. A series of experiments based on simulated data and field tests with NAVIS proved that the proposed IMEL algorithm is a better way to perform local scan matching that can offer a quick and stable positioning solution with high accuracy so it can be part of a large area localization/mapping, application. The NAVIS platform can reach an updating rate of 12 Hz in a feature-rich environment and 2 Hz even in a feature-poor environment, respectively. Therefore, it can be utilized in a real-time application.

摘要

基于网格地图的激光扫描匹配是一种很有前景的工具,可用于移动无人地面车辆(UGV)的实时室内定位。虽然存在一些关键的实施问题,例如能否通过感知未知的室内环境以足够的精度和足够低的延迟来估计位置,从而实现稳定的车辆控制,但仍需要进一步开展开发工作。不幸的是,现有的大多数方法都采用启发式算法进行快速定位,其中大量累积误差很容易导致定位精度丧失。这严重限制了其在大面积和长时间应用中的使用。本文介绍了一种高效的实时移动UGV室内定位系统,该系统适用于大面积应用,采用激光扫描匹配和改进的概率驱动最大似然估计(IMLE)算法,该算法基于多分辨率补丁划分的网格似然地图。与传统方法相比,IMLE算法的改进包括:(a)迭代闭点(ICP)预处理,可自适应地缩小搜索范围;(b)在多分辨率地图层上采用完全暴力搜索匹配方法,基于当前激光扫描与细化搜索范围内网格地图之间的似然值,以在每次扫描匹配时获得全局最优位置;(c)支持大面积室内区域的补丁划分似然地图。设计、制造并测试了一个名为NAVIS的UGV平台,该平台基于集成了激光雷达和里程计传感器的低成本机器人,以验证IMLE算法。基于模拟数据和对NAVIS进行的现场测试的一系列实验证明,所提出的IMEL算法是执行局部扫描匹配的更好方法,它可以提供快速、稳定且高精度的定位解决方案,因此可成为大面积定位/映射应用的一部分。NAVIS平台在特征丰富的环境中可分别达到12 Hz的更新速率,在特征匮乏的环境中甚至可达到2 Hz。因此,它可用于实时应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32b4/4168456/0a5282d02a2b/sensors-14-11805f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验