Suppr超能文献

小猪慢性肺动脉高压模型。

Piglet model of chronic pulmonary hypertension.

机构信息

Centre Chirurgical Marie Lannelongue, Paris-Sud University, Service de Chirurgie Thoracique, Vasculaire et de Transplantation cardio-pulmonaire, Le Plessis-Robinson, France ; Laboratoire de recherche chirurgicale and Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 999, Le Plessis-Robinson, France.

Laboratoire de recherche chirurgicale and Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 999, Le Plessis-Robinson, France.

出版信息

Pulm Circ. 2013 Dec;3(4):908-15. doi: 10.1086/674757.

Abstract

None of the animal models have been able to reproduce all aspects of CTEPH because of the rapid resolution of the thrombi in the pulmonary vasculature. The aim of this study was to develop an easily reproducible large-animal model of chronic pulmonary hypertension (PH) related to the development of a postobstructive and overflow vasculopathy. Chronic PH was induced in 5 piglets by ligation of the left pulmonary artery (PA) through a midline sternotomy followed by weekly transcatheter embolization of the right lower-lobe arteries. Sham-operated piglets (n = 5) served as controls. Hemodynamics, RV function, lung morphometry, and endothelin-1 (ET-1) pathway gene expression (ET-1 and its receptors ETA and ETB) were assessed after 5 weeks in the obstructed (left lung and right lower lobe) and unobstructed (right upper lobe) territories. All animals developed chronic PH within 5 weeks. Compared to controls, chronic-PH animals had higher mean PA pressure (28.5 ± 1.7 vs. 11.6 ± 1.8 mmHg, P = 0.0001) and total pulmonary resistance (784 ± 160 vs. 378 ± 51 dyn s(-1) cm(-5), P = 0.05). Echocardiography showed RV enlargement, RV wall thickening (56 ± 5 vs. 30 ± 4 mm, P = 0.0003), decreased tricuspid annular plane systolic excursion (11.3 ± 0.9 vs. 14.4 ± 0.4 mm, P = 0.01), and paradoxical septal motion. In obstructed territories, morphometry demonstrated increases in the number of bronchial arteries per bronchus (8.7 ± 0.9 vs. 2 ± 0.17, P < 0.0001) and in distal PA media thickness (60% ± 2.8% vs. 29% ± 0.9%, P < 0.0001), consistent with postobstructive vasculopathy. Distal PA media thickness was increased in unobstructed territories (70% ± 2.4% vs. 29% ± 0.9%, P < 0.0001). ET-1 was overexpressed in unobstructed territories, compared to controls and obstructed territories. In conclusion, the large-animal model described here is reproducible and led to the development of PH in a relatively short time frame.

摘要

由于肺血管中的血栓迅速溶解,没有一种动物模型能够重现 CTEPH 的所有方面。本研究的目的是建立一种易于重现的慢性肺动脉高压(PH)的大动物模型,该模型与阻塞后和过度灌注性血管病变有关。通过正中胸骨切开术结扎左肺动脉(PA),然后每周经导管栓塞右下肺叶动脉,在 5 头小猪中诱导慢性 PH。假手术小猪(n = 5)作为对照。在阻塞(左肺和右下肺叶)和未阻塞(右上肺叶)区域,在 5 周后评估血流动力学、RV 功能、肺形态计量学和内皮素-1(ET-1)途径基因表达(ET-1 及其受体 ETA 和 ETB)。所有动物在 5 周内均发展为慢性 PH。与对照组相比,慢性 PH 动物的平均肺动脉压(28.5 ± 1.7 对 11.6 ± 1.8 mmHg,P = 0.0001)和总肺阻力(784 ± 160 对 378 ± 51 dyn s(-1) cm(-5),P = 0.05)更高。超声心动图显示 RV 增大,RV 壁增厚(56 ± 5 对 30 ± 4 mm,P = 0.0003),三尖瓣环平面收缩期位移减少(11.3 ± 0.9 对 14.4 ± 0.4 mm,P = 0.01),和矛盾性间隔运动。在阻塞区域,形态计量学显示每个支气管的支气管动脉数量增加(8.7 ± 0.9 对 2 ± 0.17,P < 0.0001)和远端 PA 中膜厚度增加(60% ± 2.8% 对 29% ± 0.9%,P < 0.0001),符合阻塞后血管病变。未阻塞区域的远端 PA 中膜厚度增加(70% ± 2.4% 对 29% ± 0.9%,P < 0.0001)。与对照组和阻塞区域相比,未阻塞区域的 ET-1 过度表达。总之,这里描述的大动物模型是可重现的,并在相对较短的时间内导致 PH 的发展。

相似文献

1
Piglet model of chronic pulmonary hypertension.
Pulm Circ. 2013 Dec;3(4):908-15. doi: 10.1086/674757.
2
Pulmonary microvascular lesions regress in reperfused chronic thromboembolic pulmonary hypertension.
J Heart Lung Transplant. 2015 Mar;34(3):457-67. doi: 10.1016/j.healun.2014.07.005. Epub 2014 Jul 16.
6
Right ventricular plasticity in a porcine model of chronic pressure overload.
J Heart Lung Transplant. 2014 Feb;33(2):194-202. doi: 10.1016/j.healun.2013.10.026. Epub 2013 Oct 25.
7
Endothelin A receptor blockade improves regression of flow-induced pulmonary vasculopathy in piglets.
J Thorac Cardiovasc Surg. 2010 Sep;140(3):677-83. doi: 10.1016/j.jtcvs.2010.01.004.
8
Regression of postobstructive vasculopathy after revascularization of chronically obstructed pulmonary artery.
J Thorac Cardiovasc Surg. 2004 Apr;127(4):1009-17. doi: 10.1016/j.jtcvs.2003.07.048.
10
Exercise facilitates early recognition of cardiac and vascular remodeling in chronic thromboembolic pulmonary hypertension in swine.
Am J Physiol Heart Circ Physiol. 2018 Mar 1;314(3):H627-H642. doi: 10.1152/ajpheart.00380.2017. Epub 2017 Nov 22.

引用本文的文献

1
Pulmonary endarterectomy for chronic thromboembolic pulmonary hypertension: Technical challenges and controversies.
JHLT Open. 2025 Jul 30;10:100357. doi: 10.1016/j.jhlto.2025.100357. eCollection 2025 Nov.
2
Paracrine Action of Bone Morphogenetic Protein 3 in Pulmonary Arterial Hypertension.
bioRxiv. 2025 Jun 18:2025.06.13.659638. doi: 10.1101/2025.06.13.659638.
3
Right ventricle remodelling: from to and from simple to complex models.
J Mol Cell Cardiol Plus. 2025 Apr 14;12:100298. doi: 10.1016/j.jmccpl.2025.100298. eCollection 2025 Jun.
4
Ca Cycling Alteration in a Porcine Model of Right Ventricular Dysfunction.
Circ Heart Fail. 2025 May;18(5):e012293. doi: 10.1161/CIRCHEARTFAILURE.124.012293. Epub 2025 Apr 18.
6
Establishment of mouse models for severe pulmonary hypertension through 'double-hit' strategies.
Exp Physiol. 2024 Dec;109(12):2026-2030. doi: 10.1113/EP091833. Epub 2024 Sep 27.
7
A Dynamic Sheep Model to Induce Pulmonary Hypertension and Right Ventricular Failure.
Methods Mol Biol. 2024;2803:239-258. doi: 10.1007/978-1-0716-3846-0_18.
9
Chronic thromboembolic pulmonary hypertension: the magic of pathophysiology.
Ann Cardiothorac Surg. 2022 Mar;11(2):106-119. doi: 10.21037/acs-2021-pte-10.
10
Chronic Thromboembolic Pulmonary Hypertension: the Bench.
Curr Cardiol Rep. 2021 Aug 19;23(10):141. doi: 10.1007/s11886-021-01572-6.

本文引用的文献

1
Endothelin A receptor blockade improves regression of flow-induced pulmonary vasculopathy in piglets.
J Thorac Cardiovasc Surg. 2010 Sep;140(3):677-83. doi: 10.1016/j.jtcvs.2010.01.004.
2
Chronic thromboembolic pulmonary hypertension.
Semin Respir Crit Care Med. 2009 Aug;30(4):471-83. doi: 10.1055/s-0029-1233316. Epub 2009 Jul 24.
3
Diagnosis and assessment of pulmonary arterial hypertension.
J Am Coll Cardiol. 2009 Jun 30;54(1 Suppl):S55-S66. doi: 10.1016/j.jacc.2009.04.011.
4
Updated clinical classification of pulmonary hypertension.
J Am Coll Cardiol. 2009 Jun 30;54(1 Suppl):S43-S54. doi: 10.1016/j.jacc.2009.04.012.
5
Regression of flow-induced pulmonary arterial vasculopathy after flow correction in piglets.
J Thorac Cardiovasc Surg. 2009 Jun;137(6):1538-46. doi: 10.1016/j.jtcvs.2008.07.069. Epub 2009 Feb 7.
6
Large animal model of chronic pulmonary hypertension.
ASAIO J. 2008 Jul-Aug;54(4):396-400. doi: 10.1097/MAT.0b013e31817efa85.
7
Pulmonary microvascular disease in chronic thromboembolic pulmonary hypertension.
Proc Am Thorac Soc. 2006 Sep;3(7):571-6. doi: 10.1513/pats.200605-113LR.
8
Chronic thromboembolic pulmonary hypertension.
Circulation. 2006 Apr 25;113(16):2011-20. doi: 10.1161/CIRCULATIONAHA.105.602565.
9
Treatment of pulmonary arterial hypertension.
N Engl J Med. 2004 Sep 30;351(14):1425-36. doi: 10.1056/NEJMra040291.
10
Chronic thromboembolic pulmonary hypertension.
Eur Respir J. 2004 Apr;23(4):637-48. doi: 10.1183/09031936.04.00079704.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验