Department of Chemistry and RNA Institute, University at Albany , SUNY, 1400 Washington Avenue, Albany, New York 12222, United States.
ACS Appl Mater Interfaces. 2014 Aug 13;6(15):12100-10. doi: 10.1021/am503553h. Epub 2014 Jul 22.
We controlled the fluorescence emission of a fluorescently labeled iron oxide nanoparticle using three different nanomaterials with ultraefficient quenching capabilities. The control over the fluorescence emission was investigated via spacing introduced by the surface-functionalized single-stranded DNA molecules. DNA molecules were conjugated on different templates, either on the surface of the fluorescently labeled iron oxide nanoparticles or gold and nanographene oxide. The efficiency of the quenching was determined and compared with various fluorescently labeled iron oxide nanoparticle and nanoquencher combinations using DNA molecules with three different lengths. We have found that the template for DNA conjugation plays significant role on quenching the fluorescence emission of the fluorescently labeled iron oxide nanoparticles. We have observed that the size of the DNA controls the quenching efficiency when conjugated only on the fluorescently labeled iron oxide nanoparticles by setting a spacer between the surfaces and resulting change in the hydrodynamic size. The quenching efficiency with 12mer, 23mer and 36mer oligonucleotides decreased to 56%, 54% and 53% with gold nanoparticles, 58%, 38% and 32% with nanographene oxide, 46%, 38% and 35% with MoS2, respectively. On the other hand, the presence, not the size, of the DNA molecules on the other surfaces quenched the fluorescence significantly with different degrees. To understand the effect of the mobility of the DNA molecules on the nanoparticle surface, DNA molecules were attached to the surface with two different approaches. Covalently immobilized oligonucleotides decreased the quenching efficiency of nanographene oxide and gold nanoparticles to ∼22% and ∼21%, respectively, whereas noncovalently adsorbed oligonucleotides decreased it to ∼25% and ∼55%, respectively. As a result, we have found that each nanoquencher has a powerful quenching capability against a fluorescent nanoparticle, which can be tuned with surface functionalized DNA molecules.
我们使用三种具有超高猝灭能力的纳米材料控制荧光标记氧化铁纳米粒子的荧光发射。通过表面功能化单链 DNA 分子引入的间隔来研究荧光发射的控制。DNA 分子连接在不同的模板上,要么连接在荧光标记氧化铁纳米粒子的表面上,要么连接在金和纳米石墨烯氧化物上。使用具有三种不同长度的 DNA 分子,确定了猝灭效率,并将其与各种荧光标记氧化铁纳米粒子和纳米猝灭剂组合进行了比较。我们发现,DNA 连接模板在猝灭荧光标记氧化铁纳米粒子的荧光发射方面起着重要作用。我们观察到,当仅连接在荧光标记氧化铁纳米粒子上时,DNA 的大小通过在表面之间设置间隔体来控制猝灭效率,从而导致流体力学尺寸发生变化。带有 12mer、23mer 和 36mer 寡核苷酸的金纳米粒子的猝灭效率分别降低至 56%、54%和 53%,纳米石墨烯氧化物的猝灭效率分别降低至 58%、38%和 32%,MoS2 的猝灭效率分别降低至 46%、38%和 35%。另一方面,其他表面上 DNA 分子的存在而不是大小显著地显著猝灭了荧光,其程度不同。为了了解 DNA 分子在纳米粒子表面上的迁移性的影响,我们采用两种不同的方法将 DNA 分子连接到表面上。共价固定的寡核苷酸将纳米石墨烯氧化物和金纳米粒子的猝灭效率分别降低至约 22%和约 21%,而非共价吸附的寡核苷酸将其分别降低至约 25%和约 55%。因此,我们发现每个纳米猝灭剂对荧光纳米粒子都具有强大的猝灭能力,并且可以使用表面功能化的 DNA 分子进行调节。
ACS Appl Mater Interfaces. 2014-7-22
Phys Chem Chem Phys. 2012-6-28
Langmuir. 2012-6-1
Sensors (Basel). 2016-11-14