Koch Henriette, Christensen Julie A E, Frandsen Rune, Zoetmulder Marielle, Arvastson Lars, Christensen Soren R, Jennum Poul, Sorensen Helge B D
Technical University of Denmark, Department of Electrical Engineering, Ørsteds Plads, Building 349, 2800 Kgs. Lyngby, Denmark.
Technical University of Denmark, Department of Electrical Engineering, Ørsteds Plads, Building 349, 2800 Kgs. Lyngby, Denmark; Danish Center for Sleep Medicine, Department of Clinical Neurophysiology, Glostrup Hospital, Nordre Ringvej 57, 2600 Glostrup, Denmark; H. Lundbeck A/S, Ottiliavej 9, 2500 Valby, Denmark.
J Neurosci Methods. 2014 Sep 30;235:130-7. doi: 10.1016/j.jneumeth.2014.07.002. Epub 2014 Jul 9.
The golden standard for sleep classification uses manual scoring of polysomnography despite points of criticism such as oversimplification, low inter-rater reliability and the standard being designed on young and healthy subjects.
To meet the criticism and reveal the latent sleep states, this study developed a general and automatic sleep classifier using a data-driven approach. Spectral EEG and EOG measures and eye correlation in 1s windows were calculated and each sleep epoch was expressed as a mixture of probabilities of latent sleep states by using the topic model Latent Dirichlet Allocation. Model application was tested on control subjects and patients with periodic leg movements (PLM) representing a non-neurodegenerative group, and patients with idiopathic REM sleep behavior disorder (iRBD) and Parkinson's Disease (PD) representing a neurodegenerative group. The model was optimized using 50 subjects and validated on 76 subjects.
The optimized sleep model used six topics, and the topic probabilities changed smoothly during transitions. According to the manual scorings, the model scored an overall subject-specific accuracy of 68.3 ± 7.44 (% μ ± σ) and group specific accuracies of 69.0 ± 4.62 (control), 70.1 ± 5.10 (PLM), 67.2 ± 8.30 (iRBD) and 67.7 ± 9.07 (PD).
Statistics of the latent sleep state content showed accordances to the sleep stages defined in the golden standard. However, this study indicates that sleep contains six diverse latent sleep states and that state transitions are continuous processes.
The model is generally applicable and may contribute to the research in neurodegenerative diseases and sleep disorders.
尽管睡眠分类的金标准存在一些批评意见,如过于简化、评分者间可靠性低以及该标准是基于年轻健康受试者设计的,但睡眠分类的金标准仍采用多导睡眠图的人工评分。
为了回应这些批评并揭示潜在的睡眠状态,本研究采用数据驱动的方法开发了一种通用的自动睡眠分类器。计算了1秒窗口内的脑电图频谱和眼电图测量值以及眼动相关性,并使用主题模型潜在狄利克雷分配将每个睡眠时段表示为潜在睡眠状态概率的混合。在代表非神经退行性组的对照受试者和周期性腿部运动(PLM)患者,以及代表神经退行性组的特发性快速眼动睡眠行为障碍(iRBD)和帕金森病(PD)患者身上测试了模型应用。该模型使用50名受试者进行优化,并在76名受试者上进行验证。
优化后的睡眠模型使用了六个主题,并且主题概率在转换过程中平滑变化。根据人工评分,该模型的总体受试者特异性准确率为68.3±7.44(%μ±σ),组特异性准确率分别为69.0±4.62(对照组)、70.1±5.10(PLM组)、67.2±8.30(iRBD组)和67.7±9.07(PD组)。
潜在睡眠状态内容的统计结果与金标准中定义的睡眠阶段一致。然而,本研究表明睡眠包含六种不同的潜在睡眠状态,并且状态转换是连续的过程。
该模型具有普遍适用性,可能有助于神经退行性疾病和睡眠障碍的研究。