Śmieja Marek, Warszycki Dawid, Tabor Jacek, Bojarski Andrzej J
Faculty of Mathematics and Computer Science, Jagiellonian University, Kraków, Poland.
Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland.
PLoS One. 2014 Jul 14;9(7):e102069. doi: 10.1371/journal.pone.0102069. eCollection 2014.
The automatic clustering of chemical compounds is an important branch of chemoinformatics. In this paper the Asymmetric Clustering Index (Aci) is proposed to assess how well an automatically created partition reflects the reference. The asymmetry allows for a distinction between the fixed reference and the numerically constructed partition. The introduced index is applied to evaluate the quality of hierarchical clustering procedures for 5-HT1A receptor ligands. We find that the most appropriate combination of parameters for the hierarchical clustering of compounds with a determined activity for this biological target is the Klekota Roth fingerprint combined with the complete linkage function and the Buser similarity metric.
化合物的自动聚类是化学信息学的一个重要分支。本文提出了不对称聚类指数(Aci),以评估自动创建的划分与参考的匹配程度。这种不对称性允许区分固定参考和数值构建的划分。引入的指数用于评估5-HT1A受体配体的层次聚类程序的质量。我们发现,对于具有确定活性的该生物靶点的化合物进行层次聚类时,最合适的参数组合是Klekota Roth指纹、完全连锁函数和Buser相似性度量。