Suppr超能文献

咽肌活动对人上气道吸气负向用力依赖性的影响。

Influence of pharyngeal muscle activity on inspiratory negative effort dependence in the human upper airway.

作者信息

Genta Pedro R, Owens Robert L, Edwards Bradley A, Sands Scott A, Eckert Danny J, Butler James P, Loring Stephen H, Malhotra Atul, Jackson Andrew C, White David P, Wellman Andrew

机构信息

Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA.

Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA.

出版信息

Respir Physiol Neurobiol. 2014 Sep 15;201:55-9. doi: 10.1016/j.resp.2014.07.005. Epub 2014 Jul 11.

Abstract

The upper airway is often modeled as a Starling resistor, which predicts that flow is independent of inspiratory effort during flow limitation. However, while some obstructive sleep apnea (OSA) patients exhibit flat, Starling resistor-like flow limitation, others demonstrate considerable negative effort dependence (NED), defined as the percent reduction in flow from peak to mid-inspiration. We hypothesized that the variability in NED could be due to differences in phasic pharyngeal muscle activation between individuals. Therefore, we induced topical pharyngeal anesthesia to reduce phasic pharyngeal muscle activation to see if it increased NED. Twelve subjects aged 50±10 years with a BMI of 35±6 kg/m(2) and severe OSA (apnea-hypopnea index=52±28 events/h) were studied. NED and phasic genioglossus muscle activity (EMG(GG)) of flow limited breaths were determined before and after pharyngeal anesthesia with lidocaine. Pharyngeal anesthesia led to a 33% reduction in EMG(GG) activity (p<0.001), but NED worsened only by 3.6±5.8% (p=0.056). In conclusion, phasic EMG(GG) had little effect on NED. This finding suggests that individual differences in phasic EMG(GG) activation do not likely explain the variability in NED found among OSA patients.

摘要

上气道通常被模拟为一个斯塔林电阻器,这预示着在气流受限期间,气流与吸气努力无关。然而,虽然一些阻塞性睡眠呼吸暂停(OSA)患者表现出平坦的、类似斯塔林电阻器的气流受限,但另一些患者则表现出相当程度的负努力依赖性(NED),即从吸气峰值到吸气中期气流减少的百分比。我们假设NED的变异性可能是由于个体之间咽部肌肉相位性激活的差异所致。因此,我们采用咽部局部麻醉来减少咽部肌肉的相位性激活,以观察这是否会增加NED。我们对12名年龄在50±10岁、体重指数为35±6 kg/m²且患有重度OSA(呼吸暂停低通气指数=52±28次/小时)的受试者进行了研究。在使用利多卡因进行咽部麻醉前后,测定了气流受限呼吸的NED和颏舌肌相位性肌肉活动(EMG(GG))。咽部麻醉使EMG(GG)活动降低了33%(p<0.001),但NED仅恶化了3.6±5.8%(p=0.056)。总之,相位性EMG(GG)对NED影响不大。这一发现表明,相位性EMG(GG)激活的个体差异不太可能解释OSA患者中发现的NED变异性。

相似文献

1
Influence of pharyngeal muscle activity on inspiratory negative effort dependence in the human upper airway.
Respir Physiol Neurobiol. 2014 Sep 15;201:55-9. doi: 10.1016/j.resp.2014.07.005. Epub 2014 Jul 11.
2
Alteration in upper airway dilator muscle coactivation during sleep: comparison of patients with obstructive sleep apnea and healthy subjects.
J Appl Physiol (1985). 2018 Feb 1;124(2):421-429. doi: 10.1152/japplphysiol.01067.2016. Epub 2017 Nov 30.
3
Test of the Starling resistor model in the human upper airway during sleep.
J Appl Physiol (1985). 2014 Dec 15;117(12):1478-85. doi: 10.1152/japplphysiol.00259.2014. Epub 2014 Oct 16.
4
Reduced genioglossal activity with upper airway anesthesia in awake patients with OSA.
J Appl Physiol (1985). 2000 Apr;88(4):1346-54. doi: 10.1152/jappl.2000.88.4.1346.
5
The classical Starling resistor model often does not predict inspiratory airflow patterns in the human upper airway.
J Appl Physiol (1985). 2014 Apr 15;116(8):1105-12. doi: 10.1152/japplphysiol.00853.2013. Epub 2014 Jan 23.
6
Peri-pharyngeal muscle response to inspiratory loading: comparison of patients with OSA and healthy subjects.
J Sleep Res. 2019 Oct;28(5):e12756. doi: 10.1111/jsr.12756. Epub 2018 Aug 30.
7
Airflow Shape Is Associated With the Pharyngeal Structure Causing OSA.
Chest. 2017 Sep;152(3):537-546. doi: 10.1016/j.chest.2017.06.017. Epub 2017 Jun 23.

引用本文的文献

1
Role of Glossopharyngeal Nerve Stimulation in Stabilizing the Lateral Pharyngeal Wall and Ventilation in OSA: A Pilot Study.
Chest. 2025 May;167(5):1493-1496. doi: 10.1016/j.chest.2025.02.009. Epub 2025 Feb 18.
2
Current and novel treatment options for obstructive sleep apnoea.
ERJ Open Res. 2022 Jun 27;8(2). doi: 10.1183/23120541.00126-2022. eCollection 2022 Apr.
3
Alterations in Serum Adropin, Adiponectin, and Proinflammatory Cytokine Levels in OSAS.
Can Respir J. 2020 May 4;2020:2571283. doi: 10.1155/2020/2571283. eCollection 2020.
5
[Pathophysiology of obstructive sleep apnea].
HNO. 2019 Sep;67(9):654-662. doi: 10.1007/s00106-019-0720-9.
6
Retropalatal and retroglossal airway compliance in patients with obstructive sleep apnea.
Respir Physiol Neurobiol. 2018 Dec;258:98-103. doi: 10.1016/j.resp.2018.06.008. Epub 2018 Jun 18.
7
Airflow Shape Is Associated With the Pharyngeal Structure Causing OSA.
Chest. 2017 Sep;152(3):537-546. doi: 10.1016/j.chest.2017.06.017. Epub 2017 Jun 23.
9
New Approaches to Diagnosing Sleep-Disordered Breathing.
Sleep Med Clin. 2016 Jun;11(2):143-52. doi: 10.1016/j.jsmc.2016.01.005. Epub 2016 Mar 4.

本文引用的文献

1
The classical Starling resistor model often does not predict inspiratory airflow patterns in the human upper airway.
J Appl Physiol (1985). 2014 Apr 15;116(8):1105-12. doi: 10.1152/japplphysiol.00853.2013. Epub 2014 Jan 23.
2
CrossTalk opposing view: the human upper airway during sleep does not behave like a Starling resistor.
J Physiol. 2013 May 1;591(9):2233-4. doi: 10.1113/jphysiol.2012.242297.
3
Defining phenotypic causes of obstructive sleep apnea. Identification of novel therapeutic targets.
Am J Respir Crit Care Med. 2013 Oct 15;188(8):996-1004. doi: 10.1164/rccm.201303-0448OC.
4
Upper airway collapsibility and patterns of flow limitation at constant end-expiratory lung volume.
J Appl Physiol (1985). 2012 Sep 1;113(5):691-9. doi: 10.1152/japplphysiol.00091.2012. Epub 2012 May 24.
7
Reduced genioglossal activity with upper airway anesthesia in awake patients with OSA.
J Appl Physiol (1985). 2000 Apr;88(4):1346-54. doi: 10.1152/jappl.2000.88.4.1346.
8
Effects of NREM sleep on dynamic within-breath changes in upper airway patency in humans.
J Appl Physiol (1985). 1998 Jan;84(1):190-9. doi: 10.1152/jappl.1998.84.1.190.
9
Upper airway anesthesia reduces phasic genioglossus activity during sleep apnea.
Am J Respir Crit Care Med. 1997 Jul;156(1):127-32. doi: 10.1164/ajrccm.156.1.9608037.
10
Effect of topical upper airway anesthesia on apnea duration through the night in obstructive sleep apnea.
J Appl Physiol (1985). 1996 Dec;81(6):2618-26. doi: 10.1152/jappl.1996.81.6.2618.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验