Suppr超能文献

负载型金属分子催化剂: 有机金属化学与表面科学的交叉。

Molecular metal catalysts on supports: organometallic chemistry meets surface science.

机构信息

Department of Chemical Engineering and Materials Science, University of California , Davis, California 95616, United States.

出版信息

Acc Chem Res. 2014 Aug 19;47(8):2612-20. doi: 10.1021/ar500170k. Epub 2014 Jul 18.

Abstract

Recent advances in the synthesis and characterization of small, essentially molecular metal complexes and metal clusters on support surfaces have brought new insights to catalysis and point the way to systematic catalyst design. We summarize recent work unraveling effects of key design variables of site-isolated catalysts: the metal, metal nuclearity, support, and other ligands on the metals, also considering catalysts with separate, complementary functions on supports. The catalysts were synthesized with the goal of structural simplicity and uniformity to facilitate incisive characterization. Thus, they are essentially molecular species bonded to porous supports chosen for their high degree of uniformity; the supports are crystalline aluminosilicates (zeolites) and MgO. The catalytic species are synthesized in reactions of organometallic precursors with the support surfaces; the precursors include M(L)2(acetylacetonate)1-2, with M = Ru, Rh, Ir, or Au and the ligands L = C2H4, CO, or CH3. Os3(CO)12 and Ir4(CO)12 are used as precursors of supported metal clusters, and some such catalysts are made by ship-in-a-bottle syntheses to trap the clusters in zeolite cages. The simplicity and uniformity of the supported catalysts facilitate precise structure determinations, even in reactive atmospheres and during catalysis. The methods of characterizing catalysts in reactive atmospheres include infrared (IR), extended X-ray absorption fine structure (EXAFS), X-ray absorption near edge structure (XANES), and nuclear magnetic resonance (NMR) spectroscopies, and complementary methods include density functional theory and atomic-resolution aberration-corrected scanning transmission electron microscopy for imaging of individual metal atoms. IR, NMR, XANES, and microscopy data demonstrate the high degrees of uniformity of well-prepared supported species. The characterizations determine the compositions of surface metal complexes and clusters, including the ligands and the metal-support bonding and structure, which identify the supports as ligands with electron-donor properties that influence reactivity and catalysis. Each of the catalyst design variables has been varied independently, illustrated by mononuclear and tetranuclear iridium on zeolite HY and on MgO and by isostructural rhodium and iridium (diethylene or dicarbonyl) complexes on these supports. The data provide examples resolving the roles of the catalyst design variables and place the catalysis science on a firm foundation of organometallic chemistry linked with surface science. Supported molecular catalysts offer the advantages of characterization in the absence of solvents and with surface-science methods that do not require ultrahigh vacuum. Families of supported metal complexes have been made by replacement of ligands with others from the gas phase. Spectroscopically identified catalytic reaction intermediates help to elucidate catalyst performance and guide design. The methods are illustrated for supported complexes and clusters of rhodium, iridium, osmium, and gold used to catalyze reactions of small molecules that facilitate identification of the ligands present during catalysis: alkene dimerization and hydrogenation, H-D exchange in the reaction of H2 with D2, and CO oxidation. The approach is illustrated with the discovery of a highly active and selective MgO-supported rhodium carbonyl dimer catalyst for hydrogenation of 1,3-butadiene to give butenes.

摘要

最近在合成和表征小分子、基本分子金属配合物和金属团簇在支撑表面上的进展为催化带来了新的见解,并为系统的催化剂设计指明了方向。我们总结了最近的工作,揭示了位点隔离催化剂的关键设计变量的影响:金属、金属核数、载体和其他配体对金属的影响,同时还考虑了在载体上具有独立、互补功能的催化剂。这些催化剂是为了结构简单和均匀而合成的,以方便进行深入的表征。因此,它们基本上是与多孔载体结合的分子物种,这些载体选择的是具有高度均匀性的沸石;载体是结晶的铝硅酸盐(沸石)和氧化镁。催化物种是通过有机金属前体与载体表面的反应合成的;前体包括 M(L)2(乙酰丙酮化物)1-2,其中 M = Ru、Rh、Ir 或 Au,配体 L = C2H4、CO 或 CH3。Os3(CO)12 和 Ir4(CO)12 被用作负载金属簇的前体,一些这样的催化剂是通过瓶中船合成制成的,以将簇捕获在沸石笼中。负载催化剂的简单性和均匀性便于进行精确的结构测定,即使在反应气氛中和催化过程中也是如此。在反应气氛中表征催化剂的方法包括红外(IR)、扩展 X 射线吸收精细结构(EXAFS)、X 射线吸收近边结构(XANES)和核磁共振(NMR)光谱学,以及互补方法包括密度泛函理论和原子分辨率像差校正扫描透射电子显微镜,用于单个金属原子的成像。IR、NMR、XANES 和显微镜数据证明了制备良好的负载物种具有高度的均匀性。这些特性确定了表面金属配合物和团簇的组成,包括配体以及金属-载体键合和结构,这表明载体是具有供电子性质的配体,会影响反应性和催化。每个催化剂设计变量都已经独立变化,这在沸石 HY 上的单核和四核铱以及氧化镁上的单核和四核铱以及这些载体上的同构铑和铱(二乙烯或二羰基)配合物上得到了例证。这些数据提供了确定催化剂设计变量作用的实例,并将催化科学建立在与表面科学相关的有机金属化学基础上。负载分子催化剂具有在不存在溶剂的情况下进行表征的优点,并且具有不需要超高真空的表面科学方法。已经通过气相中的其他配体替代来制备负载金属配合物的系列。光谱学鉴定的催化反应中间体有助于阐明催化剂性能并指导设计。该方法用于铑、铱、锇和金的负载配合物和团簇的催化,以促进鉴定催化过程中存在的配体:烯烃二聚和加氢、H2 与 D2 反应中的 H-D 交换以及 CO 氧化。该方法通过发现一种用于 1,3-丁二烯加氢制丁烯的高活性和选择性氧化镁负载的铑羰基二聚体催化剂得到了说明。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验