Xu Siyan, Barker Kerry, Menon Sandeep, D'Agostino Ralph B
a Department of Biostatistics , Boston University , Boston , Massachusetts , USA.
J Biopharm Stat. 2014;24(6):1173-89. doi: 10.1080/10543406.2014.941993.
Noninferiority (NI) clinical trials are getting a lot of attention of late due to their direct application in biosimilar studies. Because of the missing placebo arm, NI is an indirect approach to demonstrate efficacy of a test treatment. One of the key assumptions in the NI test is the constancy assumption, that is, that the effect of the reference treatment is the same in current NI trials as in historical superiority trials. However, if a covariate interacts with the treatment arms, then changes in distribution of this covariate will likely result in violation of constancy assumption. In this article, we propose four new NI methods and compare them with two existing methods to evaluate the change of background constancy assumption on the performance of these six methods. To achieve this goal, we study the impact of three elements-(1) strength of covariate, (2) degree of interaction between covariate and treatment, and (3) differences in distribution of the covariate between historical and current trials-on both the type I error rate and power using three different measures of association: difference, log relative risk, and log odds ratio. Based on this research, we recommend using a modified covariate-adjustment fixed margin method.
近年来,非劣效性(NI)临床试验因其在生物类似药研究中的直接应用而备受关注。由于缺少安慰剂组,非劣效性是一种间接证明试验治疗效果的方法。非劣效性检验的关键假设之一是恒定性假设,即当前非劣效性试验中对照治疗的效果与历史优效性试验中的效果相同。然而,如果一个协变量与治疗组相互作用,那么该协变量分布的变化可能会导致恒定性假设被违反。在本文中,我们提出了四种新的非劣效性方法,并将它们与两种现有方法进行比较,以评估背景恒定性假设的变化对这六种方法性能的影响。为实现这一目标,我们使用三种不同的关联度量——差值、对数相对风险和对数优势比,研究三个因素——(1)协变量的强度、(2)协变量与治疗之间的相互作用程度、(3)历史试验和当前试验中协变量分布的差异——对I型错误率和检验效能的影响。基于这项研究,我们建议使用改良的协变量调整固定界值法。