Suppr超能文献

使用径向代谢物索引法描绘神经胶质瘤。

Delineation of gliomas using radial metabolite indexing.

作者信息

Raschke F, Jones T L, Barrick T R, Howe F A

机构信息

Neurosciences Research Centre, Cardiovascular and Cell Sciences Institute, St George's, University of London, London, UK.

出版信息

NMR Biomed. 2014 Sep;27(9):1053-62. doi: 10.1002/nbm.3154. Epub 2014 Jul 7.

Abstract

(1) H MRSI has demonstrated the ability to characterise and delineate brain tumours, but robust data analysis methods are still needed. In this study, we present an objective analysis method for MRSI data to delineate tumour abnormality regions. The presented method is a development of the choline-to-N-acetylaspartate index (CNI), which uses perpendicular distances in a choline versus N-acetylaspartate plot as a measure of abnormality. We propose a radial CNI (rCNI) method that uses the choline to N-acetylaspartate ratio directly as an abnormality measure. To avoid problems with small or zero denominators, we perform an arctangent transformation. CNI abnormality contours were evaluated using a z-score threshold of 2 (CNI2) and 2.5 (CNI2.5) and compared with rCNI2. Simulations modelling low-grade (LGG) and high-grade (HGG) gliomas with different tissue compartments and partial volume effects suggest improved specificity of rCNI2 (LGG 92%/HGG 91%) over CNI2 (LGG 69%/HGG 69%) and CNI2.5 (LGG 74%/HGG 75%), whilst retaining a similar sensitivity to both CNI2 and CNI2.5. Our simulation results also confirm a previously reported increase in specificity of CNI2.5 over CNI2 with little penalty in sensitivity. The analysis of MRSI data acquired from 10 patients with low-grade glioma at 3 T suggests a more robust delineation of the lesions using rCNI with respect to conventional imaging compared with standard CNI. Further analysis of 29 glioma datasets acquired at 1.5 T, together with previously published estimated tumour proportions, suggests that rCNI has higher sensitivity and specificity for the identification of abnormal MRSI voxels.

摘要

(1)氢磁共振波谱成像(H MRSI)已显示出对脑肿瘤进行特征描述和勾勒的能力,但仍需要强大的数据分析方法。在本研究中,我们提出了一种用于MRSI数据的客观分析方法,以勾勒肿瘤异常区域。所提出的方法是胆碱与N-乙酰天门冬氨酸指数(CNI)的一种改进,它在胆碱与N-乙酰天门冬氨酸图中使用垂直距离作为异常的度量。我们提出了一种径向CNI(rCNI)方法,该方法直接使用胆碱与N-乙酰天门冬氨酸的比值作为异常度量。为避免分母过小或为零的问题,我们进行反正切变换。使用z分数阈值2(CNI2)和2.5(CNI2.5)评估CNI异常轮廓,并与rCNI2进行比较。对具有不同组织成分和部分容积效应的低级别(LGG)和高级别(HGG)胶质瘤进行模拟建模,结果表明rCNI2(LGG 92%/HGG 91%)比CNI2(LGG 69%/HGG 69%)和CNI2.5(LGG 74%/HGG 75%)具有更高的特异性,同时对CNI2和CNI2.5保持相似的敏感性。我们的模拟结果还证实了先前报道的CNI2.5相对于CNI2特异性增加而敏感性损失较小。对10例3T低级别胶质瘤患者获取的MRSI数据进行分析表明,与标准CNI相比,使用rCNI在传统成像方面对病变的勾勒更稳健。对1.5T获取的29个胶质瘤数据集进行进一步分析,以及先前发表的估计肿瘤比例,表明rCNI在识别异常MRSI体素方面具有更高的敏感性和特异性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验