Haro Marta, Song Taeseup, Guerrero Antonio, Bertoluzzi Luca, Bisquert Juan, Paik Ungyu, Garcia-Belmonte Germà
Photovoltaics and Optoelectronic Devices Group, Departament de Física, Universitat Jaume I, 12071 Castelló, Spain.
Phys Chem Chem Phys. 2014 Sep 7;16(33):17930-5. doi: 10.1039/c4cp02377c.
Si nanotubes for reversible alloying reaction with lithium are able to accommodate large volume changes and offer improved cycle retention and reliable response when incorporated into battery anodes. However, Si nanotube electrodes exhibit poor rate capability because of their inherently low electron conductivity and Li ion diffusivity. Si/Ge double-layered nanotube electrodes show promise to improve structural stability and electrochemical kinetics, as compared to homogeneous Si nanotube arrays. The mechanism explaining the enhancement in the rate capabilities is revealed here by means of electrochemical impedance methods. The Ge shell efficiently provides electrons to the active materials, which increase the semiconductor conductivity thereby assisting Li(+) ion incorporation. The charge transfer resistance which accounts for the interfacial Li(+) ion intake from the electrolyte is reduced by two orders of magnitude, indicating the key role of the Ge layer as an electron supplier. Other resistive processes hindering the electrode charge-discharge process are observed to show comparable values for Si and Si/Ge array electrodes.
用于与锂发生可逆合金化反应的硅纳米管能够承受较大的体积变化,并且在并入电池阳极时具有更好的循环保持率和可靠的响应。然而,硅纳米管电极由于其固有的低电子电导率和锂离子扩散率而表现出较差的倍率性能。与均匀的硅纳米管阵列相比,硅/锗双层纳米管电极有望提高结构稳定性和电化学动力学。本文通过电化学阻抗方法揭示了解释倍率性能增强的机制。锗壳有效地为活性材料提供电子,这增加了半导体电导率,从而有助于锂离子的掺入。负责从电解质中摄取界面锂离子的电荷转移电阻降低了两个数量级,表明锗层作为电子供应者的关键作用。观察到阻碍电极充放电过程的其他电阻过程对于硅和硅/锗阵列电极显示出相当的值。