EL-Manzalawy Yasser, Honavar Vasant
Department of Systems and Computer Engineering, Al-Azhar University, Cairo, Egypt,
Methods Mol Biol. 2014;1184:285-94. doi: 10.1007/978-1-4939-1115-8_15.
Identification of B-cell epitopes in target antigens is a critical step in epitope-driven vaccine design, immunodiagnostic tests, and antibody production. B-cell epitopes could be linear, i.e., a contiguous amino acid sequence fragment of an antigen, or conformational, i.e., amino acids that are often not contiguous in the primary sequence but appear in close proximity within the folded 3D antigen structure. Numerous computational methods have been proposed for predicting both types of B-cell epitopes. However, the development of tools for reliably predicting B-cell epitopes remains a major challenge in immunoinformatics.Classifier ensembles a promising approach for combining a set of classifiers such that the overall performance of the resulting ensemble is better than the predictive performance of the best individual classifier. In this chapter, we show how to build a classifier ensemble for improved prediction of linear B-cell epitopes. The method can be easily adapted to build classifier ensembles for predicting conformational epitopes.
确定靶抗原中的B细胞表位是表位驱动疫苗设计、免疫诊断测试和抗体生产中的关键步骤。B细胞表位可以是线性的,即抗原的连续氨基酸序列片段,也可以是构象性的,即那些在一级序列中通常不连续但在折叠的三维抗原结构中紧密相邻的氨基酸。已经提出了许多计算方法来预测这两种类型的B细胞表位。然而,可靠预测B细胞表位的工具开发仍然是免疫信息学中的一项重大挑战。分类器集成是一种很有前景的方法,它将一组分类器组合起来,使得所得集成的整体性能优于最佳单个分类器的预测性能。在本章中,我们展示了如何构建一个分类器集成以改进线性B细胞表位的预测。该方法可以很容易地改编以构建用于预测构象表位的分类器集成。