Suppr超能文献

构建用于B细胞表位预测的分类器集成。

Building classifier ensembles for B-cell epitope prediction.

作者信息

EL-Manzalawy Yasser, Honavar Vasant

机构信息

Department of Systems and Computer Engineering, Al-Azhar University, Cairo, Egypt,

出版信息

Methods Mol Biol. 2014;1184:285-94. doi: 10.1007/978-1-4939-1115-8_15.

Abstract

Identification of B-cell epitopes in target antigens is a critical step in epitope-driven vaccine design, immunodiagnostic tests, and antibody production. B-cell epitopes could be linear, i.e., a contiguous amino acid sequence fragment of an antigen, or conformational, i.e., amino acids that are often not contiguous in the primary sequence but appear in close proximity within the folded 3D antigen structure. Numerous computational methods have been proposed for predicting both types of B-cell epitopes. However, the development of tools for reliably predicting B-cell epitopes remains a major challenge in immunoinformatics.Classifier ensembles a promising approach for combining a set of classifiers such that the overall performance of the resulting ensemble is better than the predictive performance of the best individual classifier. In this chapter, we show how to build a classifier ensemble for improved prediction of linear B-cell epitopes. The method can be easily adapted to build classifier ensembles for predicting conformational epitopes.

摘要

确定靶抗原中的B细胞表位是表位驱动疫苗设计、免疫诊断测试和抗体生产中的关键步骤。B细胞表位可以是线性的,即抗原的连续氨基酸序列片段,也可以是构象性的,即那些在一级序列中通常不连续但在折叠的三维抗原结构中紧密相邻的氨基酸。已经提出了许多计算方法来预测这两种类型的B细胞表位。然而,可靠预测B细胞表位的工具开发仍然是免疫信息学中的一项重大挑战。分类器集成是一种很有前景的方法,它将一组分类器组合起来,使得所得集成的整体性能优于最佳单个分类器的预测性能。在本章中,我们展示了如何构建一个分类器集成以改进线性B细胞表位的预测。该方法可以很容易地改编以构建用于预测构象表位的分类器集成。

相似文献

1
Building classifier ensembles for B-cell epitope prediction.
Methods Mol Biol. 2014;1184:285-94. doi: 10.1007/978-1-4939-1115-8_15.
2
Databases for B-cell epitopes.
Methods Mol Biol. 2014;1184:135-48. doi: 10.1007/978-1-4939-1115-8_7.
3
In Silico Prediction of Linear B-Cell Epitopes on Proteins.
Methods Mol Biol. 2017;1484:255-264. doi: 10.1007/978-1-4939-6406-2_17.
4
Computational prediction of conformational B-cell epitopes from antigen primary structures by ensemble learning.
PLoS One. 2012;7(8):e43575. doi: 10.1371/journal.pone.0043575. Epub 2012 Aug 21.
5
Prediction of conformational B-cell epitopes.
Methods Mol Biol. 2014;1184:185-96. doi: 10.1007/978-1-4939-1115-8_10.
6
Improved method for linear B-cell epitope prediction using antigen's primary sequence.
PLoS One. 2013 May 7;8(5):e62216. doi: 10.1371/journal.pone.0062216. Print 2013.
7
Application of Meta Learning to B-Cell Conformational Epitope Prediction.
Methods Mol Biol. 2020;2131:375-397. doi: 10.1007/978-1-0716-0389-5_22.
8
A meta-learning approach for B-cell conformational epitope prediction.
BMC Bioinformatics. 2014 Nov 18;15(1):378. doi: 10.1186/s12859-014-0378-y.
9
Predicting linear B-cell epitopes using string kernels.
J Mol Recognit. 2008 Jul-Aug;21(4):243-55. doi: 10.1002/jmr.893.
10
Using random forest to classify linear B-cell epitopes based on amino acid properties and molecular features.
Biochimie. 2014 Aug;103:1-6. doi: 10.1016/j.biochi.2014.03.016. Epub 2014 Apr 8.

引用本文的文献

2
In Silico Prediction of Linear B-Cell Epitopes on Proteins.
Methods Mol Biol. 2017;1484:255-264. doi: 10.1007/978-1-4939-6406-2_17.
3
ProInflam: a webserver for the prediction of proinflammatory antigenicity of peptides and proteins.
J Transl Med. 2016 Jun 14;14(1):178. doi: 10.1186/s12967-016-0928-3.
4
EPMLR: sequence-based linear B-cell epitope prediction method using multiple linear regression.
BMC Bioinformatics. 2014 Dec 19;15(1):414. doi: 10.1186/s12859-014-0414-y.

本文引用的文献

2
In silico models for B-cell epitope recognition and signaling.
Methods Mol Biol. 2013;993:129-38. doi: 10.1007/978-1-62703-342-8_9.
3
Reliable B cell epitope predictions: impacts of method development and improved benchmarking.
PLoS Comput Biol. 2012;8(12):e1002829. doi: 10.1371/journal.pcbi.1002829. Epub 2012 Dec 27.
4
An assessment on epitope prediction methods for protozoa genomes.
BMC Bioinformatics. 2012 Nov 21;13:309. doi: 10.1186/1471-2105-13-309.
5
Recent advances in B-cell epitope prediction methods.
Immunome Res. 2010 Nov 3;6 Suppl 2(Suppl 2):S2. doi: 10.1186/1745-7580-6-S2-S2.
6
Predicting flexible length linear B-cell epitopes.
Comput Syst Bioinformatics Conf. 2008;7:121-32.
7
Epitope mapping protocols. Preface.
Methods Mol Biol. 2009;524:v-vi.
8
SEPPA: a computational server for spatial epitope prediction of protein antigens.
Nucleic Acids Res. 2009 Jul;37(Web Server issue):W612-6. doi: 10.1093/nar/gkp417. Epub 2009 May 22.
9
COBEpro: a novel system for predicting continuous B-cell epitopes.
Protein Eng Des Sel. 2009 Mar;22(3):113-20. doi: 10.1093/protein/gzn075. Epub 2008 Dec 10.
10
ElliPro: a new structure-based tool for the prediction of antibody epitopes.
BMC Bioinformatics. 2008 Dec 2;9:514. doi: 10.1186/1471-2105-9-514.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验