Suppr超能文献

通过计算蛋白质表面的静电去溶剂化惩罚来进行计算性抗原表位预测。

Computational antigenic epitope prediction by calculating electrostatic desolvation penalties of protein surfaces.

作者信息

Fiorucci Sébastien, Zacharias Martin

机构信息

Faculté des Sciences, UMR-CNRS 7272, Institut de Chimie de Nice, Université de Nice-Sophia Antipolis, Nice Cedex 2, 06108, France,

出版信息

Methods Mol Biol. 2014;1184:365-74. doi: 10.1007/978-1-4939-1115-8_20.

Abstract

The prediction of antigenic epitopes on the surface of proteins is of great importance for vaccine development and to specifically design recombinant antibodies. Computational methods based on the three-dimensional structure of the protein allow for the detection of noncontinuous epitopes in contrast to methods based on the primary amino-acid sequence only. A method recently developed to predict protein-protein binding sites is presented, and the application to predict putative antigenic epitopes is described in detail. The prediction approach is based on the local perturbation of the electrostatic field at the surface of a protein due to a neutral probe of low dielectric constant that represents an approaching binding partner. The calculated change in electrostatic energy corresponds to an energy penalty of desolvating a protein surface region, and antigenic epitope surface regions tend to be associated with a lower penalty compared to the average protein surface. The protocol to perform the calculations is described and illustrated on an example antigen, the outer surface protein A of Borrelia burgdorferi, a pathogenic organism causing lyme disease.

摘要

预测蛋白质表面的抗原表位对于疫苗开发和特异性设计重组抗体非常重要。与仅基于一级氨基酸序列的方法相比,基于蛋白质三维结构的计算方法能够检测非连续表位。本文介绍了一种最近开发的预测蛋白质-蛋白质结合位点的方法,并详细描述了其在预测推定抗原表位方面的应用。该预测方法基于低介电常数中性探针(代表接近的结合伴侣)对蛋白质表面静电场的局部扰动。计算得到的静电能变化对应于蛋白质表面区域去溶剂化的能量惩罚,与平均蛋白质表面相比,抗原表位表面区域往往具有较低的惩罚。文中描述了执行计算的方案,并以一种示例抗原——引起莱姆病的致病生物体伯氏疏螺旋体的外表面蛋白A为例进行说明。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验